
Bayesian Learning for Nonlinear
System Identification

Page 1 of 1

20/12/2013file:///D:/Downloads/Imperial_College_London_crest.svg

Wei Pan

Department of Bioengineering
Imperial College London

This thesis is submitted for the degree of
Doctor of Philosophy

March 2017

I would like to dedicate this thesis to my loving parents.

Declaration of Originality

I hereby declare that this thesis was entirely my own work and that any additional
sources of information have been duly cited.

I hereby declare that any internet sources, published or unpublished works from
which I have quoted or drawn reference have been reference fully in the text and
in the contents list. I understand that failure to do this will result in failure of this
project due to Plagiarism.

I understand I may be called for a viva and if so must attend. I acknowledge that
was my responsibility to check whether I am required to attend and that I will be
available during the viva period.

Wei Pan
March 2017

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Cre-
ative Commons Attribution Non-Commercial No Derivatives licence. Researchers
are free to copy, distribute or transmit the thesis on the condition that they attribute it,
that they do not use it for commercial purposes and that they do not alter, transform
or build upon it. For any reuse or redistribution, researchers must make clear to
others the licence terms of this work.

Wei Pan
March 2017

Acknowledgements

First, I want to deeply thank my supervisor, Dr. Guy-Bart Stan, for his encour-
agement and guidance and support for my research all these years, as well as for
providing a unique free and open environment that allows me pursue my own
interest. I appreciate all his contributions of ideas, time, funding to make my Ph.D.
study an open eye journey.

I would like to thank Dr. Ye Yuan, my long term collaborator. I can always find
spark when we discuss in London, Cambridge, Luxembourg and Wuhan. Thanks,
Ye, for everything. I have been so fortunate to collaborate and benefit from many
great minds: Prof. Jorge Gonçalves, Prof. Mauricio Barahona, Dr. Aivar Sootla, Dr.
Wei Dai, Prof. Lennart Ljung, Prof. Henrik Sandberg, Dr. Neil Dalchau, Dr. Andrew
Philips and Prof. Yike Guo. Every tiny detail on meetings, discussions, presentations
and paper writing suddenly came out of my mind. I apologise not to include all the
aspects I learn from you simply because there are too many. Thank you all.

I am indebted to my undergraduate supervisor, Prof. Huijun Gao, for the invalu-
able advice and support he has been giving me all these years. I would also to thank
Prof. Zidong Wang, my role model through years. I felt lucky to reunion with you
in London.

Outside the lab, I like to thank all the friends I have met here in London, for their
friendship and the many wonderful moments they have shared with me, and for
their kind help and support during various stages of my stay here.

I also would like to thank two companies I’ve worked for during my Ph.D.
study: Active Securities and Cardwell Investment Technologies, who showed me
the possibilities of my work in financial industry.

Last but not least, I want to acknowledge and thank the support of my research.
This research was generously supported by Microsoft Research, Dorothy-Hodgkin
Postgraduate Award, Department of Bioengineering.

Abstract

Prediction and control of behaviour and abnormalities in any complex dynamical
systems, and in particular those encountered in biology, physics, engineering require
the development of multivariate mechanistic and predictive models that integrate
large datasets from different sources. Although, a large amount of data are being
collected on a daily basis, very few methods allow the automatic creation from these
data of nonlinear dynamical models for understanding and (re-)design/control,
and an inordinate amount of time is still being spent on the manual aggregation of
information and development of models that explains these data.

In particular, this thesis considers sparse modelling and estimation for a selection
of nonlinear dynamical systems classes. There are two key features of modern time
series data, i.e., high dimensionality and large scale. The dimensionality, or the
complexity, grew with the sample size, and “ultra-high” refers to the case where
the dimensionality increased at a non-polynomial rate. Scale, or the size, refers to
the dimension of the system, i.e., the number of state variables. This work aims to
design a framework and associated algorithms for the identification of a variety of
nonlinear dynamical systems encountered in practice from high-dimensional and
large-scale time series data.

In the first part of the thesis, we introduce the type of time series data and the
class of nonlinear dynamical system considered in this thesis. Both a selection of
time-invariant and time-varying nonlinear dynamical systems are covered. For
time-invariant system, the classic nonlinear system identification problem from
single dataset is addressed in the beginning. Then we move to a more practical
and significant yet complicated scenario where heterogeneous datasets are used
simultaneously. Such datasets typically contain (a) data from several replicates
of an experiment performed on a biological system of interest and/or (b) data
measured from a biochemical system subjected to different experimental conditions,
for example, changes/perturbations in biological inductions, temperature, gene
knock-out, gene over-expression, etc. For time-varying systems, the regime-switch
system identification problem is considered, i.e., the problem of identifying both

xii

the switching points and the nonlinear model structure within each regime. Then
the abrupt change point detection problem is considered. Using these, the classic
trending filtering and fault diagnosis problems are revisited. All the identification
problems are formulated as various ℓ0 type optimisation problems. In the end, we
discuss some technical issues on data processing arising from practical applications.

In the second part of the thesis, a repository of algorithms are derived respectively
for each identification problem formulated in the first part. These algorithms are not
distinct and can be formulated in a unified way using Bayesian Learning with struc-
tural sparse prior. Furthermore, we suggest a series of iterative reweighted convex
relaxation schemes for connecting these algorithms to popular algorithms including
Lasso, Group-Lasso, Generalised-Lasso, Fused-Lasso and Graphical-Lasso. In this
part, we go beyond from simple nonlinear model class to more general class; from
data likelihood in Gaussian distribution to the more general exponential family. The
estimation of the stochastic term also discussed including ARMA and ARCH. Many
optimisation framework, such as (stochastic) gradient descent, Newton method,
Quasi-Newton method, alternating direction method of multiplier can be seamlessly
integrated into our formulation as either centralised or distributed optimisation
strategy to address high dimensionality and large scale problems. These algorithms
largely enrich not only the family of time series modelling algorithms but also sparse
signal recovery/modelling/estimation algorithms in various communities.

In the third part of the thesis, several time series modelling applications from
systems biology, complex networks and power systems are given to illustrate the
effectiveness of our modelling framework.

Last but not least, two future research directions based on the output of this
thesis are pointed out, both related to “brains”. The first is focusing on theory and
algorithm about modelling/identification/learning on deep neural networks. The
second is focusing applications in neuroscience: understanding the neural basis of
decision making using mathematical modelling from big data.

Abbreviations and SymbolsAbbreviations and Symbols

Roman Symbols

ADMM Alternative Direction Method of Multiplier

AIC Akaike Information Criterion

ARCH Autoregressive Conditional Heteroskedasticity

ARMA Autoregressive Moving Average

ARMAX Autoregressive Moving Average with External Input

ARX Autoregressive with External Input

BIC Bayesian Information Criterion

CCCP Convex-Concave Procedure or Concave-Convex Procedure

DC Difference of Convex Functions

DNN Deep Neural Networks

DL Deep Learning

GRN Genetic of Regulatory textbfNetworks

KKT Karush-Kuhn-Tucker

LS Least Square

MAP Maximum a Posteriori

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

xivxviii Abbreviations and Symbols

MLE Maximum Likelihood Estimate

MM Majorisation-Minimisation

NARX Nonlinear Autoregressive with External Input

NN Neural Networks

NP Non-deterministic Polynomial-time

PLS Penalised Least Square

RIP Restricted Isometry Property

SBL Sparse Bayesian Learning

SISO Single Input Single Output

SYSID System Identfication

w.r.t. with repect to

Subscripts

FFF 2 RM⇥N a matrix in RM⇥N

FFFi, j 2 R element in the ith row and jth column of a matrix

FFFi,: the ith row of a matrix

FFF:, j the jth column of a matrix

aaa 2 RN⇥1 a column vector in RN

ai the ith element of a vector

IIIL a identity matrix of size L⇥L, we simply use III when the dimension is obvious
from context

kbbbkp ,kbbbk`p
`p norm of a vector bbb 2 RN , that is kbbbk`p

, p
q

ÂN
i=1 bbb p

i

kbbbk0 ,kbbbk`0
`0-quasinorm is the number of non-zero elements in a vector

diag [g1, . . . ,gN] a diagonal matrix with principal diagonal elements being g1, . . . ,gN

E(aaa) the expectation of the stochastic variable aaa

xv

Abbreviations and Symbols xix

µ proportional to

, defined as

blkdiag[FFF[1], . . . ,FFF[C]] a block diagonal matrix with principal diagonal blocks being
FFF[1], . . . ,FFF[C] in turn

Tr(FFF) the trace of a matrixFFF

FFF ⌫ 000 the matrix FFF is positive semidefinite

Table of contents

List of figures xxiii

List of tables xxv

1 Introduction 1
1.1 System Identification . 2

1.1.1 The Omni-present Model . 2
1.1.2 System Identification: Data Driven Modelling 3
1.1.3 The State-of-the-Art Identification Setup 3

1.2 Convex Optimisation . 5
1.2.1 Convex Relaxation . 5
1.2.2 Convex Concave Procedure . 5

1.3 Sparse Signal Recovery . 6
1.4 Machine Learning . 8

1.4.1 Why Choose Marginal Likelihood 10
1.4.2 Why Choose Sparse Bayesian Learning 11

1.5 The Big Picture and Contributions . 14
1.5.1 A Story on Healthcare . 14
1.5.2 Strategy . 15
1.5.3 Contributions and Outlines . 17

I Dynamical Systems 21

2 Nonlinear Dynamical Systems 23
2.1 Introduction . 24
2.2 Linear Time-Invariant Systems . 25

2.2.1 Impulse Response and Transfer Function 25
2.2.2 Linear Models and Sets of Linear Models 27

xviii Table of contents

2.2.3 ARX Model Structure . 28
2.2.4 ARMAX Model Structure . 29
2.2.5 Linear Regression Model . 30

2.3 Nonlinear Time-Invariant Systems . 30
2.3.1 Nonlinear Time-Invariant Systems 32
2.3.2 Some Key Assumptions . 33
2.3.3 Linear Regression Model . 36
2.3.4 Additional Experiment Designs 40

2.4 Linear Regression Problem . 44
2.4.1 Regression Problem Statement 44
2.4.2 Nonconvex Optimisation Problem 44
2.4.3 Convex Relaxation . 45

3 Nonlinear Dynamical System with Heterogeneous Datasets 47
3.1 Introduction . 48
3.2 Linear Regression Model . 49
3.3 Linear Regression Problem . 51

3.3.1 Regression Problem Statement 51
3.3.2 Nonconvex Optimisation Problem 52
3.3.3 Convex Relaxation . 53

4 Time-Varying Dynamical System 55
4.1 Introduction . 56
4.2 Regime-Switch Dynamical System . 57

4.2.1 Scalar Linear Regime-Switch Systems 57
4.2.2 Multivariate Regime-Switch Nonlinear Systems 58

4.3 Linear Regression Model . 59
4.4 Linear Regression Problem . 60

4.4.1 Regression Problem Statement 60
4.4.2 Nonconvex Optimisation Problem 61
4.4.3 Convex Relaxation . 62

4.5 Models with Abrupt Change . 63
4.5.1 Trend Filtering . 63
4.5.2 Fault Diagnosis Problem . 65

5 Technical Issues Related to Dynamical System Identification 67
5.1 Uniquesness of Solutions in Chapter 2 68

Table of contents xix

5.2 Selection of Candidate Basis Functions 70
5.3 Dealing with Basis Function Nonlinearity 72
5.4 Gaussian Assumption . 73
5.5 Dealing with Measurement Noise . 75
5.6 Estimation of the Derivative . 77

II Algorithms 79

6 Algorithms for Likelihood in Gaussian 81
6.1 Gaussian Likelihood . 83
6.2 Sparse Prior . 84
6.3 Optimisation Problem Definition . 86
6.4 Optimisation Principle . 90
6.5 Optimisation Algorithm . 92

6.5.1 Iterative Reweighted ℓ1 Algorithm 92
6.5.2 Iterative Reweighted ℓ2 Algorithm 94
6.5.3 Inverse Covariance Matrix Estimation 95
6.5.4 Volatility Estimation . 97

6.6 Algorithms for Chapter 2 . 100
6.6.1 Sparse Prior for Chapter 2 . 100
6.6.2 Optimisation Problem Derivation 101
6.6.3 Centralised Optimisation Algorithm 102
6.6.4 Distributed Optimisation Algorithm 116

6.7 Algorithms for Chapter 3 . 121
6.7.1 Sparse Prior for Chapter 3 . 122
6.7.2 Optimisation Algorithm . 123

6.8 Algorithms for Chapter 4 . 126
6.8.1 Sparse Prior for Chapter 4 . 126
6.8.2 Optimisation Algorithm . 128

7 Algorithms for Likelihood in Exponential Family 131
7.1 Likelihood in Exponential Family . 132
7.2 Sparse Prior . 133

7.2.1 Generalised Sparse Prior . 133
7.2.2 Group Sparse Prior . 134
7.2.3 Fused Sparse Prior . 136

xx Table of contents

7.3 Optimisation Problem Definition . 137
7.4 Optimisation Algorithm . 143

7.4.1 Optimisation for unknown parameter β and hyperparameter γ 143
7.4.2 Optimisation for the parameter of the exponential family θ . . 149
7.4.3 Implementations . 150

7.5 Optimisation Algorithm with Structural Sparsity 156
7.5.1 Algorithm for Group Spare Prior in Section 7.2.2 156
7.5.2 Algorithm for Fused Sparse Prior in Section 7.2.3 159

8 Algorithms for Online Model Selection 169
8.1 Extended Kalman Filter . 170
8.2 Algorithm combining model structure identification and model re-

finement . 172

9 Algorithms for Fault Diagnosis 175
9.1 Fault Diagnosis Problem Formulation 176
9.2 Fault Detection and Isolation Algorithm 177
9.3 Fault Identification Algorithm . 177

III Applications 181

10 Biochemical Reaction Network Identification 183
10.1 Identification from Single Time Series Data 184
10.2 Identificaton from Multiple Heterogeneous Time Series Datasets . . . 189
10.3 Online Model Selection . 191

10.3.1 Background . 191
10.3.2 Questions of interest . 194
10.3.3 Simulations . 195

10.4 Identificaton Switched Biochemical Reation Networks 198

11 Complex Network Reconstruction 201
11.1 Centralised Identification . 202
11.2 Distributed Identification . 206

12 Fault Diagnosis of Power System 213
12.1 Introduction . 214
12.2 Power System Model . 215

Table of contents xxi

12.3 Fault Diagnosis Problem of Nonlinear Power Systems 218
12.3.1 Model Transformation . 218
12.3.2 Fault Diagnosis Algorithm . 220

12.4 Numerical Study . 224
12.5 Conclusion and Discussion . 225

IV Conclusion and Future Direction 229

13 Conclusion 231

14 Future Direction 235
14.1 Future Direction I: Bayesian Deep Learning 236

14.1.1 Background on Deep Learning and Deep Neural Networks . 236
14.1.2 Structural Sparsity in Deep Neural Network 239
14.1.3 Identifiability of Deep Neural Networks 245
14.1.4 Training Bayesian Deep Neural Network with Structural Sparsity249
14.1.5 Implementation on Mobile Device Chips 250

14.2 Future Direction II: Decision Making in Neuroscience 254
14.2.1 Cognitive Design Principles for Real-Time Decision Making

using Neural Big Data . 254
14.2.2 Background . 255
14.2.3 Hypothesis and Objectives . 258
14.2.4 Problems and Plan . 259

References 267

List of figures

1.1 The identification work loop (Coutersey of Professor Lennart Ljung). 4

1.2 Schematic illustration of the evolution of dynamical model duirng
disease progression . 14

1.3 The outline of this thesis. 19

10.1 Root of Normalised Mean Square Error ∥βestimate − βtrue∥2/∥βtrue∥2

averaged over 200 independent experiments for the signal-to-noise
ratios 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and 25 dB. 188

10.2 Computational running time averaged over 200 independent exper-
iments for the signal-to-noise ratios 0 dB, 5 dB, 10 dB, 15 dB, 20 dB,
and 25 dB. 188

10.3 Algorithm comparison in terms of RNMSE ∥βestimate − βtrue∥2/∥βtrue∥2

averaged over 50 independent experiments. 192

10.4 Technological platform for in-vivo model selection of synthetic cir-
cuits. In this closed loop configuration the computer (upper right
corner) takes images of the cells in the microfluidic device (lower left
corner) via a microscope (upper left corner), quantifies the output of
the network of interest in real time and applies the next sample of
input(s) via the fluidic pressure actuation system (lower right corner). 193

10.7 Estimation of the time-varying parameters. 200

11.1 Parameter RNMSE and computational running time averaged over
200 independent experiments for the signal-to-noise ratios 0 dB, 5 dB,
10 dB, 15 dB, 20 dB, and 25 dB. 205

11.2 Phase diagrams for Algorithm 4. 207

11.3 Average computational running time. 209

xxiv List of figures

12.1 Time-series of yi for all buses. The black dashed lines indicate the
threshold σ∗ in Algorithm 20. The coloured solid lines are the phase
angle measurements for bus i, i = 5, 7, 11, 16, 19. At time instant t =
3.02s, |y5|, |y7|, |y11|, |y16| and |y19| are much greater than σ∗ (σ∗ = 10
here). 225

12.2 Time-series of the sparsity of the estimated fault, i.e. ∥wfault
i −wtrue

i ∥0

for bus i = 5, 7, 11, 16, 19. 226
12.3 Identification of transmission lines faults. 227

14.2 A graphical illustration on the strategy of removing the filters in
convolutional neural networks . 242

14.3 A graphical representation of LSTM memory cells (there are minor
differences in comparison to Graves [70]). 243

14.4 A graphical illustration on the model reduction technique in control
theory . 244

14.5 A graphical illustration of DropNeuron strategy in regression problem249

List of tables

1.1 The unified work flow for algorithm derivations in Chapters 6, 7 of
Part II . 18

14.1 Summary of statistics for Sparse Regression 249

Chapter 1

Introduction

2 Introduction

1.1 System Identification

During the thesis author’s visit to Professor Lennart Ljung’s group at Linköping
University, who is the authority in the field of system identification (SYSID), a series
of ideas were shared on SYSID. I would like to quote and summarise these ideas in
what follows.

1.1.1 The Omni-present Model

It is clear to everyone in science and engineering that mathematical models are
playing increasingly important roles. Today, model-based design and optimization
is the dominant engineering paradigm to systematic design and maintenance of
engineering systems. It has proven very successful and is widely used in basically
all engineering disciplines. Concerning control applications, the aerospace industry
is the earliest example on a grand-scale of this paradigm. This industry was very
quick to adopt the theory for model based optimal control that emerged in the
1960s, and is spending great efforts and resources on developing models. In the
process industry, Model Predictive Control (MPC) has during the last 25 years
become the dominant method to optimize production on an intermediate level.
MPC uses dynamical models to predict future process behaviour and to optimize
the manipulated variables subject to process constraints.

Increasing demands on performance, efficiency, safety and environmental aspects
are pushing engineering systems to become increasingly complex. Advances in
(wireless) communications systems and micro-electronics are key enablers for this
rapid development; allowing systems to be efficiently inter-connected in networks,
reducing costs and size and paving the way for new sensors and actuators.

Model-based techniques are also gaining importance outside engineering appli-
cations. Let us just mention systems biology and health care. In the latter case it is
expected that personalised health systems will become more and more important in
the future.

Common to the examples given above are the requirements of integrating sensing
actuation, communication and computation abilities of the engineering systems, in
many cases in distributed architectures. It is also clear that these systems should
be able to operate in a reliable way in an uncertain and temporally and spatially
changing environment. In many applications, cognitive abilities and abilities to
adapt will be important. With systems being decentralized and typically containing
many actuators, sensors, states and non-linearities, but with limited access to sensor

1.1 System Identification 3

information, model building that delivers models of sufficient fidelity becomes very
challenging.

1.1.2 System Identification: Data Driven Modelling

Construction of models requires access to observed data. It could be that the model
is developed entirely from information in signals from the system (“black box
models”), or it could be that physical/engineering insights are combined with such
information (“grey box models”). In any case, verification (validation) of a model
must be done in the light of measured data. Theories and methodologies for such
model construction have been developed in many different research communities
(to some extent independently). System Identification is the term used in the Control
Community for the area of constructing mathematical models of dynamical systems
from measured input/output signals. Other communities use other terms for often
very similar techniques. The term Machine Learning has become very common in
recent years.

System identification has a history of more than 50 years since the term was
coined by Lotfi Zadeh, [227]. It is a mature research field with numerous publications,
text books, conference series, and software packages. It is often used as an example
in the control field of an area with good interaction between theory and industrial
practice. The backbone of the theory relies upon statistical grounds, with maximum
likelihood and asymptotic analysis (in the number of observed data). The goal of the
SYSID field is to find a model of the plant in question as well as of its disturbance
and also to find a characterisation of the uncertainty bound of the description.

1.1.3 The State-of-the-Art Identification Setup

To approach a SYSID problem, a number of questions need to be answered, like

• what model type should be used?

• how should the parameters in the model be adjusted?

• what inputs should be applied to obtain a good model?

• how do we assess the quality of the model?

• how do we gain confidence in an estimated model?

4 Introduction

M I
M(θ̂)

X
D

V

OK?
No, try new M Yes!

No, try newX

Fig. 1.1 The identification work loop (Coutersey of Professor Lennart Ljung).

There is a very extensive literature on the subject, with many text books [117, 175,
227]. The SYSID problem is usually formulated mathematically by introducing the
following notations

• X : The experimental conditions under which the data is generated

• D: The data

• M: The Model Structure and its parameters β

• I: The identification method by which a parameter value β̂ in the model
structureM(β) is determined based on the data D

• V : The validation process that scrutinises the identified model.

The identification of a model is typically an iterative process that involves passing
through the non-invalidation test step (“the model is not falsified (so far)”), and
also involving various revisions of the modelling choices. that passes through the
validation test (“is not falsified”), involving revisions of the necessary choices. For
several of the steps in this loop helpful support tools have been developed. It
is not quite possible or desirable to fully automate the choices, since subjective
perspectives, related to the intended use of the model are very important.

1.2 Convex Optimisation 5

1.2 Convex Optimisation

1.2.1 Convex Relaxation

Convex optimisation is a special class of mathematical optimisation problems for which
there are efficient polynomial time algorithms that are guaranteed to converge to a
global minimum [28]. Least square, linear programming, semidefinite programming,
second order cone programming are all convex optimisation problems. If a problem
can be formulated as a convex problem, it can be reliably and efficiently solved,
for instance, using interior point methods. There are free optimisation packages
(i.e., solvers) such as SDPT3 [193] and SeDuMi [183] for solving convex programs.
Moreover, user-friendly modelling languages such as CVX and YALMIP [119] make
these solvers accessible for a wide range of users.

On the contrary to convex problems, non-convex problems usually have lots of
local minima where optimisation algorithms are likely to get trapped if not initialised
properly. Convex relaxation can be used to approximate (in some cases, even exactly
solve for) the global optimum of a non-convex problem in a principled way. In some
cases, they can also be used to find bounds on the global optimum or to provide a
good point for gradient search.

In this thesis, all the SYSID problems are recast into appropriate optimisation
problems. Unfortunately, these problems are usually non-convex and NP-hard.
Nevertheless, resorting to convex relaxations, we obtain efficient solutions. In what
follows some important convex relaxations, which play a central role in deriving our
main results, are summarised. It is important to note that this Section is by no means
a comprehensive treatment of the subject. Rather, it aims at giving a basic intuition
behind each relaxation together with readily usable, relaxed, convex formulations
that will help the reader understand the development in the proceeding Chapters.

1.2.2 Convex Concave Procedure

The Convex Concave Procedure (CCCP) [226] is a majorisation-minimisation (MM)
algorithm [92] that is popularly used to solve DC (difference of convex functions).
Its main idea is to yield an iterative scheme for

min
x∈C

f(x)

6 Introduction

with C ⊆ Rp where each iteration consists of minimising a so-called majorisation
function f̄(x, x(k)) of f(x) at x(k) ∈ C

x(k+1) = argmin
x∈C

f̄
(
x, x(k)

)
(1.1)

where f̄ : C×C → R satisfies f̄(x, x) = f(x) for x ∈ C and f(x) ≤ f̄(x, z) for x, z ∈ C.
Clearly, (1.1) yields a descent algorithm. Construction of a suitable majorisation
function is a key step for MM algorithm. For difference of convex programming
problems minx∈C f(x) where

f(x) = u(x)− v(x),

u, v : C → R are convex and differentiable functions with C being a convex set in Rp,
there are many ways to construct the majorisation function [92]. The simplest one is
the so-called linear majorisation via “supporting hyperplane” [92], i.e.,

f̄
(
x, x(k)

)
= u(x)− v

(
x(k)

)
−∇v

(
x(k)

)⊤ (
x− x(k)

)
. (1.2)

For this particular choice of majorisation function, it is also referred to as “sequential
convex optimisation”.

The convergence of MM algorithm to a stationary point (the point satisfies the
Karush-Kuhn-Tucker (KKT) conditions, see e.g., [28]) has been discussed in e.g.,
[179].

1.3 Sparse Signal Recovery

In this Section, we present the background results on the problem of sparse signal
recovery [31, 196, 50] that motivates the approach pursued in this thesis.

The Sparse signal recovery problem can be stated as: given some linear mea-
surements y = Xβ of a discrete signal β ∈ RN where X ∈ RM×N , M ≪ N , find
the sparsest signal β∗ consistent with the measurements. In terms of the ℓ0 quasi-
norm (i.e. ∥ · ∥ℓ0 or ∥ · ∥0 satisfies all of the norm axioms except homogeneity since
∥cx∥0 = ∥β∥0 for all non-zero scalars c), this problem can be recast into the following
optimisation form:

min ∥β∥ℓ0 subject to: y = Xβ. (1.3)

1.3 Sparse Signal Recovery 7

When the measurements are contaminated with some noise, the optimisation prob-
lem can be formulated as a regularised linear regression form:

min
β
∥y−Xβ∥2

2 + λ ∥β∥ℓ0
. (1.4)

where λ is a tradeoff parameter or the regularisation parameter. It is well known
that the optimisation problems above are at least generically non-deterministic
polynomial-time (NP)-complete. Two fundamental questions in sparse signal re-
covery are: (i) the uniqueness of the sparse solution, (ii) the existence of efficient
algorithms for finding such a solution. In the past few years it has been shown that
if the matrix A satisfies the so-called restricted isometry property (RIP), the solution
is unique and can be recovered efficiently by several algorithms. These algorithms
fall into two main categories: greedy algorithms (e.g. orthogonal matching pursuit
[195, 197, 129, 44]) and ℓ1-based convex relaxation (also known as basis pursuit
[31, 196, 50]).

As shown in [31], the RIP condition is a sufficient condition for exact recon-
struction based on ℓ1-minimisation. It was shown in [31, 44, 30] that both convex
ℓ1-minimisations and greedy algorithms lead to exact reconstruction of S-sparse sig-
nals if the matrix X satisfies the RIP condition. The ℓ1 relaxation of the optimisation
problem in (1.4) is

min
β
∥y−Xβ∥2

2 + λ ∥β∥ℓ1 (1.5)

The idea behind this relaxation is the fact that the ℓ1 norm is the convex envelope or
tightest convex relaxation of the ℓ0 norm, and thus, in a sense, minimizing the former
yields the best convex relaxation to the (non-convex) problem of minimising the
latter. Moreover, as shown in [31, 196, 50], this relaxation is stable and robust to noise.
That is, even when only noisy linear measurements are available, if RIP holds for
X, which is true with high probability for random matrices, recovery of the correct
support of the original signal and approximating the true value within a factor of
the noise is always possible. This formulation arises naturally in many engineering
applications such as magnetic resonance imaging, radar signal processing and image
processing. Moreover, existence of efficient algorithms to solve this problem led to
the compressive sensing framework which enabled speeding up signal acquisition
considerably since the original sparse signal can be reconstructed using relatively
few measurements.

8 Introduction

One major drawback of the RIP condition is that it can be very difficult to check
(combinatorial search). Another related and easier-to-check property is the coherence
property.

Definition 1 (mutual coherence [52]) For any matrix X = [X:,1, . . . , X:,N] ∈ RM×N ,
the coherence of a matrix X is defined as

µ(X) = max
1≤j,k≤N,j ̸=k

|⟨X:,j, X:,k⟩|
∥X:,j∥2∥X:,k∥2

. (1.6)

As shown in [51], for a column normalised matrix X, i.e., ∥X:,i∥2 = 1, ℓ1-minimisation
solutions are equivalent to ℓ0-minimisation solutions if, for a solution, y = Xβ, the
following condition is satisfied:

∥β∥0 <
1
2

(
1 + 1

µ(X)

)
(1.7)

It was also shown that RIP guarantees incoherence of X, i.e. µ(X) ≈ 0, [31]. This
means one is guaranteed that ℓ1-minimisation solutions are equivalent to the true
solution only when X is near orthogonal, i.e. when the columns of X are strongly
uncorrelated.

Revisit the background of SYSID problems in Section 1.1 for a moment. As we
will show in Part II of the thesis, SYSID problems can be formulated as ℓ0 norm
regularised optimisation problems such as (1.4) and its variations. The dictionary
matrix X is constructed directly from time series data or certain transformation of
the data. Quite often, correlation between the columns of Φ is typically high (close
to 1) and the RIP condition and low coherence condition are hardly guaranteed. In
practice, ℓ1 relaxation based algorithms do not yield the optimal solution.

1.4 Machine Learning

The Machine Learning community is huge. The success of machine learning appli-
cations has boosted and been boosting the development of our modern societies.
An exhaustive literature review on machine learning is not necessary in this the-
sis. Several excellent textbooks will give an overview, technique explanations and
applications of machine learning, e.g., [22, 79, 127], to just name a few.

In this Section we would like to offer an insight into the links that exist between
machine learning and the system identification problem that we introduced earlier.

1.4 Machine Learning 9

We do this as inference tools from machine learning since they are superior in certain
aspects to the conventional approaches in SYSID. Until very recently, there has been
little contact between these concepts and system identification.

Recent research has shown that model selection problems can be successfully
dealt with using a different approach to SYSID that leads to an interesting cross
fertilization with the machine learning field [151]. Rather than postulating finite-
dimensional hypothesis spaces, e.g. using ARX, ARMAX or Laguerre models, the
new paradigm formulates the problem as function estimation possibly in an infinite-
dimensional space. In the context of linear system identification, the elements of
such space are all possible impulse responses. The intrinsical ill-posedness of the
problem is circumvented using regularization methods that also admit a Bayesian
interpretation [158]. In particular, the impulse response is modelled as a zero-mean
Gaussian process. In this way, prior information is introduced in the identification
process just assigning a covariance, named also kernel in the machine learning
literature [166]. In view of the increasing importance of these kernel methods also
in the general SYSID scenario, some of the key mathematical tools and concept
of these learning techniques should be made accessible to the control community,
e.g. reproducing kernel Hilbert spaces [8, 156], kernel methods and regularisation
networks [58, 148, 202] and the connection with the theory of Gaussian processes
[81, 158]. It is also worth noting that a straight application of these techniques in the
control field is doomed to fail unless some key features of the system identification
problem are taken into account. First, as already recalled, the relationship between
the unknown function and the measurements is not direct, as typically assumed in
the machine learning setting, but instead indirect, through the convolution with the
system input. Furthermore, in system identification it is essential that the estimation
process be informed on the stability of the impulse response. In this regard, a recent
major advance has been the introduction of new kernels which include information
on impulse response exponential stability [36, 151]. These kernels depend on some
hyperparameters which can be estimated from data e.g. using marginal likelihood
maximization. This procedure is interpretable as the counterpart of model order
selection in the classical PEM paradigm but, as it will be shown, it turns out to be
much more robust, appearing to be the real reason of success of these new procedures.
Other research directions recently developed have been the justification of the new
kernels in terms of Maximum Entropy arguments [152], the analysis of these new
approaches in a classical deterministic framework leading to the derivation of the

10 Introduction

optimal kernel [36], as well as the extension of these new techniques to the estimation
of optimal predictors [150].

Next we would like to introduce two topics or concepts in machine learning
which will be mainly applied in this thesis.

1.4.1 Why Choose Marginal Likelihood

The benefit of marginal likelihood can be quoted and summarised from [208] and
Professor Michael Jordan’s lectures on “Bayesian Modelling and Inference” at UC
Berkeley. If one were to plot the “classical” likelihood with respect to the “complexity”
of the model, one would find that as the complexity of the model increased, so
would the likelihood. In this setting, the likelihood is obtained after estimating
the parameters using some statistical methods (e.g. maximum likelihood), and
then plotting the value of P(y|β). However, the problem of using this method
of comparison is that more “complex” models will always do better than simpler
models. Because more complex models have more parameters, whatever can be
done in a simple model can be done in a complex model, and thus, a more complex
model will lead to a beeter fit. The downside is that this leads to overfitting, which
is particularly damaging in the setting of prediction. In frequentist statistics, many
methods have been developed to penalise the likelihood with respect to increasing
complexity of the model. However, these methods are typically only justified after
proposing the idea and then performing a series of analyses to show that it has
desirable properties, rather than being will-motivated from the start.

In the Bayesian framework, marginal likelihoods have a natural built-in penalty
for more complex modes. At a certain point, the marginal likelihood will begin to
decrease with increasing complexity, and hence, does not directly suffer from the
overfitting problem that occurs when considering only likelihoods. The intuition
for why the marginal likelihood will begin to decrease with increasing complexity
is that as the complexity of the model increases, the prior will be spread out more
thinly across both the “good” models and the “bad” models. Because the marginal
likelihood is the likelihood integrated with respect to the prior, spreading the prior
across too many models will place too little prior mass on the good models, and as a
result, cause the marginal likelihood to decrease.

1.4 Machine Learning 11

Another way to look at it is as follows. Suppose y is the data, β are the parameters
andM is the models

P(β|y,M) = P(y|β,M)P(β|M)
P(y|M) . (1.8)

Solving for the marginal likelihood P(y|M) in (1.8), we obtain

P(y|M) = P(y|β,M)P(β|M)
P(β|y,M) . (1.9)

Taking the log of (1.9) results in

log P(y|M) = log P(y|β,M)︸ ︷︷ ︸
log likelihood

+ log P(β|M)− log P(β|y,M)︸ ︷︷ ︸
penalty

(1.10)

This is true for any choice of β, and in particular, the maximum likelihood
estimate of β. The log P(y|β,M) term in (1.10) is the log likelihood, and only in-
creases with increasing model complexity. On the other hand, the log P(β|M) −
log P(β|y,M) term can be viewed as a “penalty” that penalises against complex
models. The overall sign of this penalty is negative because P(β|y,M), the poste-
rior, is generally larger than P(β|M), the prior, assuming that given the data, the
posterior “sharpens” up with respect to the prior. Hence, the penalty term balances
out the increase in likelihood as the model complexity increases.

1.4.2 Why Choose Sparse Bayesian Learning

Referencing several excellent Ph.D. thesis relevant to SBL [215, 10, 231], the ad-
vantage of choosing SBL for proposing solutions to the SYSID problem can be
summarised as follows

1. It is known that SBL algorithms have achieved top performance in many
practical problems, or even solved some bottlenecks which other sparse signal
recovery algorithms cannot solve [232, 233]. Besides, it is interesting to see
that SBL has connections to Lasso-type algorithms, therefore, one can modify
existing Lasso-type algorithms or design new Lasso-type algorithms to exploit
a special, application-specific structure for better performance.

2. Its recovery performance is robust to the characteristics of the matrix X, while
other algorithms are not. For example, it has been shown that when columns

12 Introduction

of X are highly coherent, SBL still maintains good performance, while other
algorithms such as Lasso or other algorithms based on convex relaxations
have seriously degraded performance [216]. Experiments also showed that
when X is a non-random matrix or a sparse matrix, SBL algorithms maintain
excellent performance. This advantage is very attractive to feature selection
in bioinformatics, source localisation, and other applications, since in these
application X is not a random matrix and its column are highly correlated.
Such situation is very often encountered in SYSID problems, or general time
series modelling problems, where X is constructed from time series data.

3. SBL has a number of desired advantages over many popular algorithms in
terms of local and global convergence. It can be shown that SBL provides a
sparser solution than Lasso-type algorithms [212]. In particular, in noiseless
situations and under certain conditions, the global minimum of the SBL cost
function is unique and corresponds to the true sparsest solution, while the
global minimum of the cost function of Lassotype algorithms is not necessarily
the true sparsest solution [213, 218]. Besides, it can be shown [214] that in
certain settings, Lasso-type algorithms and ℓp (p < 1) minimisation algorithms
always fail, while SBL succeed, regardless of X and the sparsity of β. These
advantages imply that SBL is a better choice in spare signal recovery and
SYSID problems.

4. SBL provides scale-invariant solutions, while Lasso-type algorithms cannot
[214]. Let βSBL be the optimal solution provided by SBL with the sensing matrix
X. With a diagonal matrix D, i.e., X → XD, the optimal solution provided
by SBL becomes DβSBL. In contrast, for Lasso-type algorithms, there is no
such linear relationship between the solutions. For example, the solution to
the problem min ∥y−Xβ∥2

2 + λ∥β∥1 has no such linear relationship with the
solution to the rescaled problem min ∥y −XDβ∥2

2 + λ∥β∥ℓ1 . This warns that
rescaling X may be problematic in SYSID problems when time series data are
normalised and the re-weighting procedure is used for each iteration of the
iterative algorithms.

Admittedly, SBL is not perfect. The main drawback is that SBL generally involves
large computational loads. Some strategies have been used to speed up SBL. For
example, using the marginalized likelihood method [192], several fast algorithms
have been derived [95, 9]. Using the connection between SBL and Lasso-type
algorithms [212, 235], one can obtain optimal SBL solutions by iteratively performing

1.4 Machine Learning 13

Lasso-type algorithms several times. Since Lasso-type algorithms become more
efficient year by year, using this iteration strategy also greatly benefits SBL. However,
SBL is still slower than some efficient algorithms, such as greedy algorithms or
message passing algorithms. Thus, new strategies are required to speed up SBL, and
more efficient SBL algorithms are needed.

Another drawback of SBL is that the estimation of noise variance is not reliable.
Learning rules for the noise variance in most SBL algorithms are not effective in
noisy environments. Thus, most SBL algorithms [213, 218, 95, 217] use some fixed
sub-optimal values, or require users or other algorithms to provide the value, instead
of learning it. Recently, an effective empirical strategy to enhance these learning
rules has been proposed [235, 234], which helps SBL achieve satisfactory solutions.
However, this strategy does not completely solve this problem. More effective
methods and theoretical guidance are called for.

14 Introduction

1.5 The Big Picture and Contributions

The main content of thesis is based on this thesis author’s publications with co-
authors. All of these publications are peer reviewed and the thesis author is the first
author of all of them [138, 141, 143, 142, 136, 137, 139, 140].

1.5.1 A Story on Healthcare

The treatment of some disease relies on the development and evaluation of multi-
variate predictive models, to give “the right treatment to the right patient at the right
time” by integrating large dataset from different sources. One important question
from the patient is “what is my individual prognosis?” This question cannot always
be easily answered by doctors. As an aid to diagnostics and treatment design a
model can be developed to identify different patterns of progression based on sensor
data from wearable devices for example.

Although the elapsed time between disease onset and the collection of data
samples may be unknown, the samples are normally classified with staging phases
(e.g. prognosis stages) that characterise the clinical or pathological status of disease
progression. For each patient, a personalised and tailored dynamical model needs to
be developed to explain the observations at each stage, see Figure 1.2.

Fig. 1.2 Schematic illustration of the evolution of dynamical model duirng disease
progression

1.5 The Big Picture and Contributions 15

For each individual patient k, k = 1, . . . , K, the dynamic model can be specified
by differential/difference equations

δxk(t) =



fk1(xk(t), pk1), if t ∈ [tk1, tk2), Stage 1
fk2(xk(t), pk2), if t ∈ [tk2, tk3), Stage 2
...

...
...

fks(xk(t), pks), if t ∈ [tk,start, tk,end], Stage s

. (1.11)

δ denotes the differentiation operator for continuous-time systems, or the shift
operator for discrete-time system. xk is the quantity of interested observed for the
k-th individual. fks describes the dynamics of xk and pks are the corresponding
parameters of fks. It should be noted that fks may be nonlinear. tks denotes the
starting time of stage s, start = 1, . . . , s (s may be unknown). Then the model
identification problem of interest can be summarised as follows:

Problem 1 For each patient k, given the observed the heterogeneous sample-based dataset
xk(t), we are interested in identifying the onset time tk,start of stage s; the form of fks and the
associated parameters pks at each stage s.

1.5.2 Strategy

At time instant t, the system in (1.11) for the patient k, can be expressed as a linear
combination of several dictionary functions by letting yk(t) ≜ δxk(t) as the output,

yk(t) =
N∑

n=1
Xkn(t)βkn(t), (1.12)

Xkn encodes the type of functions f(xk(t), pk) that are used to describe the system,
βkn encodes the unknown parameter pk. For nonlinear systems, more details on
such expansion can be found in [138, 136, 143, 139, 140].

Problem formulation

If there is no switch (s = 1 in (1.11) and βkn(t) = βkn, ∀t) and only one patient’s data
is collected, the model identification problem can be formulated as the following
regularised regression problem (see [138, 136, 139])

min
β

1
2

T∑
t=1
∥y(t)−

N∑
n=1

Xn(t)βn∥2
2 + λ

N∑
n=1
∥βn∥ℓ0 . (1.13)

16 Introduction

In particular when the data is contaminated by measurement noise, the problem
is discussed in [137]. If all the K patients’ data are taken into account, the model
identification problem can be formulated as (see [140])

min
β

1
2

K∑
k=1

T∑
t=1
∥yk(t)−

N∑
n=1

Xkn(t)βkn∥2
2 + λ

N∑
n=1

∥∥∥∥∥
√∑K

k=1 w2
kn

∥∥∥∥∥
ℓ0

. (1.14)

If there are switches (s > 1 in (1.11)) and only one patient’s data is collected, the
model identification problem can be formulated as (see [143]),

min
β

1
2

T∑
t=1
∥y(t)−

N∑
n=1

Xkn(t)βkn(t)∥2
2

λ1

T∑
t=1

N∑
n=1
∥βkn(t)∥ℓ0 + λ2

T −1∑
t=1

+
N∑

n=1
∥βkn(t + 1)− βkn(t)∥ℓ0 .

(1.15)

Algorithm Development

The regularised regression problems in Eqs. (1.13)-(1.15) are NP-hard. To be able to
offer some time-efficient solution to this optimisation problem, one typically consid-
ers empirical relaxations to this optimisation problem, e.g. replacing ℓ0 with ℓ1 min-
imisation, which is known to give the tightest convex relaxation to ℓ0 minimisation
problems. This gives rise to the well-known Lasso type algorithms [188, 189, 62, 190].
However, such empirical relaxations sometimes yield poor performance mainly due
to the high coherence of the dictionary matrix [52]. The variational Bayesian frame-
work often yields better performance by integrating the marginal likelihood maximi-
sation and usage of hyperparameter to control the sparsity. One of the drawbacks
of the Bayesian framework is the associated computational cost, which is higher
in comparison with currently existing state-of-art algorithms. In [136, 140, 137],
distributed convex optimisation algorithms are proposed to identify large-scale
nonlinear state-space systems from high-dimensional time series data, i.e., large
K, T, N in Eqs. (1.13)-(1.15). This algorithm can exploit multiple computation units
in parallel which makes big time series data modelling possible.

Real-time Monitoring

Another important problem is to monitor the status of the patient and give early
diagnostic and warning signals before before his health state starts to deteriorate.
This can be formulated as a problem of detecting the change point of βkn(t) when

1.5 The Big Picture and Contributions 17

βkn(t + 1)− βkn(t) ̸= 0 . A similar mathematical problem for large-scale nonlinear
power systems has been investigated in [141, 142], i.e. the problem of fault diagnosis
on transmission lines. The strategy can be potentially applied to diseases with
different patterns of progression.

Pharmacokinetics

Last but not least, prediction of human pharmacokinetics, dose and drug interactions
is also of importance. If some measured quantity of interest is treated as output and
the dosage of certain drugs is treated as input, a personalised transfer function from
input to output should be calibrated for each patient. The modelling techniques in
[138, 136, 140, 137] can be potentially used to this effect.

1.5.3 Contributions and Outlines

The central hypothesis of the thesis is that a suite of learning and optimisation
techniques based on exhibiting structures and sparseness can and will enable more
accurate reliable solutions to larger and richer time series modelling across a wide
variety of domains. In particular, this thesis focuses on addressing both statistical
and computational aspects of learning from high-dimensional large-scale structured
time series data in the following three different aspects:

Statistical modelling of nonlinear dynamical systems from time series data: In
Part I of the thesis, we propose a series of sparse statistical modelling formulations
by exploiting the structural information in both the time series data and dynamical
systems. In Chapter 2, we deal with the identification of time-invariant nonlinear
dynamical system from a single dataset [138, 136, 139]. In Chapter 3, we consider the
identification of time-invariant nonlinear dynamical system, but from heterogeneous
datasets [140]. In Chapter 3, we focus on time-varying dynamical systems. In the
first part of Chapter 3, we investigate regime-switch systems modelling from “static”
time series data [143]; in the second part, we investigate the identification of “abrupt
change” models from “streaming” time series data and in particular the trend
filtering and fault diagnosis problems [141, 142]. At the end of Part I, we discuss
some technical issues related to dynamical systems identification, model structure
selections, and data preprocessing in practice.

18 Introduction

Learning and optimisation framework for large-scale and high-dimensional time
series data: In Part II of the thesis, a scalable, general algorithm framework based
on machine learning and convex optimisation is proposed for the inference of
models presented in Part I. A schematic of the work flow for algorithm derivations
in Chapters 6, 7 of Part II can be summarised in Table 1.1.

1. Specify the likelihood of the data;

2. Specify the structural sparse prior controlled by structured hyperparameters
for various penalties in the original ℓ0 problem;

3. Formulate the nonconvex optimisation problem joint in both parameter to be
estimated and hyperparameters using a marginal likelihood maximisation
framework;

4. Apply the convex concave procedure to convexify the nonconvex optimisa-
tion problem;

5. Derive the iterative re-weighed ℓ1 or ℓ2 type algorithm (the first iteration
usually start with the empirical Lasso/Ridge regression type algorithms);

6. (Optionally) Formulate the distributed version of the algorithm for “big data”
analysis purposes.

Table 1.1 The unified work flow for algorithm derivations in Chapters 6, 7 of Part II

Applications In Part III, we apply the proposed methods to a broad class of prob-
lems in systems biology, physics and engineering [137].

A schematic of the structure of this thesis is shown in Figure 1.3. It covers
the nonlinear systems class in this thesis and two technical foundations for the
algorithms developed in this thesis is illustrated, i.e., machine learning and convex
optimisation. In particular, we emphasise the importance of closing the loop (the
red arrow on the left of Figure 1.3) from Part III to Part I. Modelling time series data
requires deep understanding and insight into the underlying dynamical systems of
specific application domains.

1.5 The Big Picture and Contributions 19

Time-Invariant
systems

Chapter 2 and 3

Time-Varing
systems

Chapter 4

Single
Dataset

Chapter 2

Heterogeneous
Datasets
Chapter 3

Regime-
switch model
Chapter 4.2

Abrupt change
model

Chapter 4.2

Part I. Dynamical Systems

Sparse Bayesian learning

Nonconvex optimisation

Convex relaxation

Distributed optimisation

Part II. Algorithms

Application in system biology modelling,
reconstruction of complex networks, fault

diagnosis of power systems, etc.

Learning

Optimisation

Part III. Applications

Fig. 1.3 The outline of this thesis.

Part I

Dynamical Systems

Chapter 2

Nonlinear Dynamical Systems

24 Nonlinear Dynamical Systems

2.1 Introduction

Identification of nonlinear dynamical systems from noisy time-series data is rel-
evant to many different fields such as systems/synthetic biology, econometrics,
finance, chemical engineering, social networks, etc. Yet, the development of general
reconstruction techniques remains challenging, especially due to the difficulty of
adequately identifying nonlinear systems [117]. Nonlinear dynamical system re-
construction aims at recovering the set of nonlinear equations associated with the
system from noisy time-series observations. The importance of nonlinear structure
identification and its associated difficulties have been widely recognised [118, 173].

Since, typically, nonlinear functional forms can be expanded as sums of terms
belonging to a family of parameterised functions (see Sec. 5.4, [117]), an usual
approach to identify nonlinear black-box models is to search amongst a set of possi-
ble nonlinear terms (e.g., basis functions) for a parsimonious description coherent
with the available data [72]. A few choices for basis functions are provided by
classical functional decomposition methods such as Volterra expansion, Taylor poly-
nomial expansion or Fourier series [117, 15]. This is typically used to model systems
such as those described by Wiener and Volterra series [210, 15], neural networks
[128], nonlinear auto-regressive with exogenous inputs (NARX) models [112], and
Hammerstein-Wiener [12] structures, to name just a few examples.

Graphical models have been proposed to capture the structure of nonlinear
dynamical networks. In the standard graphical models where each state variable
represents a node in the graph and is treated as a random variable, the nonlinear
relation among nodes can be characterised by factorising the joint probability dis-
tribution according to a certain directed graph [104, 147, 177]. However, standard
graphical models are often not adequate for dealing with times series directly. This
is mainly due to two aspects inherent to the construction of graphical models. The
first aspect pertains to the efficiency of graphical models built using time series data.
In this case, the building of graphical models requires the estimation of conditional
distributions with a large number of random variables [16] (each time series is mod-
elled as a finite sequence of random variables), which is typically not efficient. The
second aspect pertains to the estimation of the moments of conditional distribution,
which is very hard to do with a limited amount of data especially when the system
to reconstruct is nonlinear. In the case of linear dynamical systems, the first two mo-
ments can sometimes be estimated from limited amount of data [11, 123]. However,

2.2 Linear Time-Invariant Systems 25

higher moments typically need to be estimated if the system under consideration is
nonlinear.

In this Chapter, we will start with an introduction to linear time-invariant systems
in Section 2.2; then we will extend this introduction to nonlinear time-invariant
systems in Section 2.3; in Section 2.4, we will give the regression problem formulation
for the nonlinear SYSID problem from single experiment. The regression problem is
further formulated as a ℓ0 type optimisation problem in Section 2.4.2 and a tentative
empirical ℓ1 relaxation is proposed in Section 2.4.3. At the end of the Chapter,
we discuss the uniqueness of the solution and the selection of the basis functions.
The latter discussion also applies to other Chapters throughout this thesis. The
algorithms for this Chapter will be provided in Section 6.6 of Chapter 6.

2.2 Linear Time-Invariant Systems

2.2.1 Impulse Response and Transfer Function

Impulse Response

As in [117], we first introduce some preliminary for impulse response and transfer
function. Consider a system with a scalar input signal u(t) and a scalar output signal
y(t). The system is said to be time invariant if its response to a certain input signal
does not depend on absolute time. It is said to be linear if its output responses to a
linear combination of inputs is the same linear combination of the output responses
of the individual inputss. Furthermore, it is said to be causal if the output at a certain
time depends on the input up to that time only.

It is well known that a linear, time-invariant, causal system can be described by
its impulse response (or weighting functions) g(τ) as follows:

y(t) =
∫ ∞

τ=0
g(τ)u(t− τ)dτ (2.1)

Knowing {g(τ)}∞
τ=0 and knowing u(s) for s ≤ t, we can consequently compute the

corresponding output y(s), s ≤ t for any inputs. The impulse response is thus a
complete characterisation of the system.

In practice, 1). inputs and outputs are observed in discrete time due to the typical
data-acquisition mode; 2). disturbance is ubiquitous due to measurement noise
and/or uncontrollable inputs. We thus assume y(t) to be observed at the sampling
instants tk = kT , k = 1, 2, . . .: y(kT) =

∫∞
τ=0 g(τ)u(kT − τ)dτ . The interval T will be

26 Nonlinear Dynamical Systems

called the sampling interval. It is, of course, also possible to consider the situation
where the sampling instants are not equally spread. By defining the impulse response
of the system {g(k)}∞

k=1, we have

y(t) =
∞∑

k=1
g(k)u(t− k) + v(t), t = 0, 1, 2, . . . (2.2)

where v(t) is the disturbance. However, the probability distribution of the distur-
bance is not known a priori. Typically, the disturbance is assumed to be

v(t) =
∞∑

k=1
h(k)e(t− k).

where {e(t)} is white noise, i.e., a sequence of independent (identical distributed)
random variables with a certain probability density function. Although this descrip-
tion does not allow completely general characterisations of all possible probabilistic
disturbance, it is versatile enough for most practical purposes. Then we have

y(t) =
∞∑

k=1
g(k)u(t− k) +

∞∑
k=1

h(k)e(t− k), t = 0, 1, 2, . . . (2.3)

Transfer Function

It will be convenient to introduce a shorthand notation for (2.3) we introduce the
forward shift operator q by

qu(t) = u(t + 1)

and the backward shift operator q−1:

q−1u(t) = u(t− 1).

This is exactly equivalent to the lag operator as introduced in time series literature
(see [73, eq.(2.1.3)] for example), i.e.,

Lu(t) = u(t− 1).

We introduced the notation

G(q) =
∞∑

k=1
g(k)q−k (2.4)

2.2 Linear Time-Invariant Systems 27

which is called the transfer operator or the transfer function of the linear system. It
should be noted that, the term transfer function should be reserved for the z-transform
of {g(k)}∞

k=1, that is

G(z) =
∞∑

k=1
g(k)z−k. (2.5)

And similarly with

H(q) =
∞∑

k=1
h(k)q−k (2.6)

2.2.2 Linear Models and Sets of Linear Models

A linear time-invariant model is specified by the impulse response {g(k)}∞
1 , the spec-

trum Φv(ω) = λ|H(ejω)|2 of the additive disturbance, and, possibly, the probability
density function (PDF) of the distrubance e(t). A complete model is thus given by

y(t) =g(1)u(t− 1) + g(2)u(t− 2) + . . . + g(∞)u(t−∞)
+ h(1)e(t− 1) + h(2)e(t− 2) + . . . + h(∞)e(t−∞)

=G(q)u(t) + H(q)e(t)
pe(·), the PDF of e

(2.7)

with

G(q) =
∞∑

k=1
g(k)q−k, H(q) = 1 +

∞∑
k=1

h(k)q−k. (2.8)

A particular model thus corresponds to the specification of the three functions G,
H , and pe. It is in most cases impractical to make this specification by enumerating
the infinite sequences {g(k)}, {h(k)} together with the function pe(·). Instead one
chooses to work with structures that permit the specification of G and H in terms of a
finite number of numerical values. Rational transfer functions and finite-dimensional
state-space descriptions are typical examples of this. Also, most often the PDF pe is
not specified as a function, but described in terms of a few numerical characteristics,
typically the first and second moments

E(e(t)) =
∫

xpe(x)dx = 0,

E(e2(t)) =
∫

x2pe(x)dx = λ.
(2.9)

It is also common to assume that e(t) is Gaussian, in which the PDF is entirely speci-
fied by (2.9). The specification of (2.7) in terms of finite number of numerical values,

28 Nonlinear Dynamical Systems

or coefficients, has another and most important consequence for the purposes of
system identification. Quite often it is not possible to determine these coefficients
a priori from knowledge of the physical mechanisms that govern the system’s be-
haviour. Instead the determination of all or some of them must be left to estimation
procedures. This means that the coefficients in question enter the model (2.7) as
parameters to be determined. We shall generally denote such parameters by the vector
θ, and thus have a model description

y(t) = G(q, θ)u(t) + H(q, θ)e(t)
pe(·), the PDF of e

(2.10)

The parameters vector θ then ranges over a subset of RN , where N is the dimension
of θ:

θ ∈ DM ⊂ RN (2.11)

Notice that (2.10) and (2.11) no longer is a model; it is a set of models, and it is for
the estimation procedure to select that member in the set that appears to be most
suitable for the purpose in question.

Perhaps the most immediate way of parametrising G and H is to represent them
as rational functions and let the parameters be the numerator and denominator
coefficients.

2.2.3 ARX Model Structure

Probably the most simple input-output relationship is obtained by describing it as
linear difference equation:

y(t) + a1y(t− 1) + . . . + anay(t− na) = b1u(t− 1) + . . . + bnb
u(t− nb) + e(t). (2.12)

Since the white-niose term e(t) here enters as a direct error in the difference equation,
the model (2.12) is often called as an equaiton error model (structure). The adjustable
parameters are in this case

θ = [a1 a2 . . . ana b1 b2 . . . bnb
]⊤ . (2.13)

If we introduce
A(q) = 1 + a1q

−1 + . . . + anaq−na ,

2.2 Linear Time-Invariant Systems 29

and
B(q) = b1q

−1 + . . . + bnb
q−nb .

We see that (2.12) corresponds to (2.10) with

G(q, θ) = B(q)
A(q) , H(q, θ) = 1

A(q) . (2.14)

Remark 1 It may seem annoying to use q as an argument of A(q), being a polynomial in
q−1. The reason for this is, however, simply to be consistent with the conventional definition
of the z-transform.

2.2.4 ARMAX Model Structure

The basic disadvantage with the simple model (2.12) is the lack of adequate freedom
in describing the properties of the disturbance term. We could add flexibility to that
by describing the equation as a moving average of white noise. This gives the model

y(t) + a1y(t− 1) + . . . + anay(t− na)
=b1u(t− 1) + . . . + bnb

u(t− nb) + e(t) + c1e(t− 1) + . . . + cnee(t− nc),
(2.15)

with
C(q) = 1 + c1q

−1 + . . . + cncq
−nc .

It can be rewritten as
A(q)y(t) = B(q)u(t) + C(q)e(t) (2.16)

and clearly corresponds to (2.7) with

G(q, θ) = B(q)
A(q) , H(q, θ) = C(q)

A(q) , (2.17)

where now
θ =

[
a1 . . . ana b1 . . . bnb

c1 . . . cnc

]⊤
.

In view of the moving average (MA) part C(q)e(t), the model (2.16) will be called
ARMAX. The ARMAX model has become a standard tool in control and economet-
rics for both system description and control design. A version with an enforced
integration in the noise description is the ARIMA(X) model (I for integration, with or
without the X-variable u), which is useful to describe systems with slow disturbance:

30 Nonlinear Dynamical Systems

see the book by Box and Jenkins [25]. It is obtained by replacing y(t) and u(t) in (2.16)
by their differences ∆y(t) = y(t)− y(t− 1).

2.2.5 Linear Regression Model

Let us compute the predictor for (2.12), which gives

ŷ(t|θ) = B(q)u(t) + [1− a(q)] y(t) (2.18)

Clearly, this expression could have more easily been derived from (2.12). Without
a stochastic framework, the predictor (2.18) is a natural choice if the the term e(t)
in (2.12) is considered to be “insignificant” or “difficult to guess.” It is thus perfect
natural to work with the expression (2.18) also for the “deterministic” models.

Now we introduce the vector

ϕ(t) =
[
−y(t− 1) . . . −y(t− na) u(t− 1) . . . u(t− nb)

]⊤
. (2.19)

Then (2.18) can be rewritten as

ŷ(t|θ) = ϕ(t)⊤θ. (2.20)

This is the important property of (2.12) that we alluded to previously. The predictor
is a scalar product between a known data vector ϕ(t) and the parameter vector θ.
Such a model is called a linear regression in statistics, and the vector ϕ(t) is known
as the regression vector. It is of importance since powerful and simple estimation
method can be applied for the determination of θ.

In case some coefficient of the polynomials A and B are known, we arrive at the
linear regression of the form

ŷ(t|θ) = ϕ⊤(t)θ + µ(t) (2.21)

where µ(t) is a known term.

2.3 Nonlinear Time-Invariant Systems

In Eq. (2.21), we defined a linear regression model structure where the prediction is
linear in the parameters:

ŷ(t|θ) = ϕ(t)⊤θ. (2.22)

2.3 Nonlinear Time-Invariant Systems 31

To describe a linear difference equation, the components of the vector ϕ(t) (i.e.,
the regressors), were chosen as lagged input and output values: see (2.19). When
using (2.22) it is, however, immaterial how ϕ(t) is formed: what matters is that it is
a known quantity at time t. We can thus let it contain arbitrary transformations of
measured data. Let, as usual, yt and ut denote the input and output sequences up to
time t. Then we could write

ŷ(t|θ) = θ1ϕ1(ut, yt−1) + . . . + θdϕd(ut, yt−1) = ϕ(t)⊤θ (2.23)

with arbitrary functions ϕ(t) of past data. The structure (2.23) could be regarded
as a finite-dimensional parametrisation of a general, unknown, nonlinear predictor.
The key is how to choose the functions ϕi(ut, yt−1). Next we will discuss on how to
choose ϕi(ut, yt−1) using polynomial terms.

Example 1 As an example of the above, consider the following model of polynomial terms
single-input single-output (SISO) nonlinear autoregressive system with exogenous inputs
(NARX model) [112]

x(t + 1) = 0.7x5(t)x(t− 1)− 0.5x(t− 2) + 0.6u4(t− 2)− 0.7x(t− 2)u2(t− 1) + ξ(t).
(2.24)

with x ∈ R, u ∈ R, and ξ ∈ R. The maximal state and input memory orders are mx = 2
and mu = 2 respectively.

Suppose we collect M + 2 data samples satisfying (2.24). We can then write the corre-
sponding dynamics as

y = Xθ + Ξ

with

y ≜
[

x(4), . . . , x(M)
]T
∈ R(M−3)×1,

X ≜


x5(3)x(2) x(1) u4(1) x(1)u2(2)

...
...

...
...

x5(M − 1)x(M − 2) x(M − 3) u4(M − 3) x(M − 3)u2(M − 2)

 ∈ R(M−3)×4,

θ ≜ [0.7,−0.5, 0.6, 0.7]T ∈ R4×1

Ξ ≜
[

ξ(3), . . . , ξ(M − 1)
]T
∈ R(M−3)×1. (2.25)

32 Nonlinear Dynamical Systems

2.3.1 Nonlinear Time-Invariant Systems

Now we give a formal introduction to the nonlinear time-invariant systems consid-
ered in this and next Chapters. With appropriately chosen embedding dimension or
memory of the system κi (resp. νj) for state (resp. input) variable xi (resp. uj), for
i = 1, . . . , nx, j = 1, . . . , nu and k = 1, . . . , nξ one can obtain delayed coordinate and
Nx-dimensional stacked state vector

xi(t) = [xi(t), xi(t− 1), . . . , xi(t− (κi − 1))]⊤ ∈ Rκi ,

X(t) =
[
(x1(t))⊤, · · · , (xnx(t))⊤

]⊤
∈ RNx , Nx =

∑nx

i=1 κi;
(2.26)

and delayed coordinate and Nu-dimensional stacked input vector

uj(t) = [uj(t), uj(t− 1), . . . , uj(t− (νj − 1))]⊤ ∈ Rνj ,

U(t) = [(u1(t))⊤, · · · , (unu(t))⊤]⊤ ∈ RNu , Nu =
∑nu

j=1 νj.
(2.27)

and delayed coordinate and Nξ-dimensional stacked noise vector

ξk(t) = [ξk(t), ξk(t− 1), . . . , ξk(t− (υk − 1))]⊤ ∈ Rυk ,

Ξ(t) = [(ξ1(t))⊤, · · · , (ξnξ
(t))⊤]⊤ ∈ RNξ , Nξ =

∑nξ

k=1 υk.
(2.28)

Suppose τ is a natural number, the delayed element in xi(t), uj(t) and ξk(t) can
be indexed as xi(t− τ), uj(t− τ) and ξk(t− τ) respectively. τ can be interpreted as
temporal index of the data, as well as the sampling interval and delay which can be
an arbitrary positive real number. To ease notations and efficient temporal index of
the data, we assume τ = 1 throughout the thesis. The system dynamics are typically
written in the Langevin form and referred to as “the Langevin equation” and the
corresponding observation equations, i = 1, . . . , nx:

xi(t + 1) = Fi (X(t), U(t)) + Gi (X(t), U(t)) ·Ξ(t), (2.29)

zi(t) = xi(t) + ϵi(t), (2.30)

xi(t) is the system or state variable, the observation variable zi(t) is the collected data
contaminated by the ubiquitous observational noise. Similarly, we can define the
delayed coordinate and Nz-dimensional stacked observation vector zi(t) and Z(t).
The underlying assumption here is all state variables are observable, i.e., Nz = Nx.
In probability and mathematical finance community, Fi is the drift coefficient and
Gi is the diffusion coefficient.

2.3 Nonlinear Time-Invariant Systems 33

Remark 2 On the left hand side of (2.29), we replace xi(t + 1) with some other quantities,
i.e., δ(t, xi(t + 1)). δ(t, xi(t)) can be defined depending whether there is state variable in the
expression. In the state-independent scenario, it can be expressed as a polynomial function of
time t, for example,

δ(t, xi(t + 1)) ≜ t or t2 etc, (2.31a)

δ(t, xi(t + 1)) ≜ log t, t > 0, (2.31b)

δ(t, xi(t + 1)) ≜ constant. (2.31c)

Applications include factor asset pricing models [38], conservation laws in physics and
chemistry.

In the state-dependent scenario, to give a few examples in the following, it can be expressed
as

δ(t, xi(t + 1)) ≜ xi(t + 1), (2.32a)

δ(t, xi(t + 1)) ≜ xi(t + 1)− xi(t), (2.32b)

δ(t, xi(t + 1)) ≜ log xi(t + 1), xi(t) > 0, (2.32c)

δ(t, xi(t + 1)) ≜ log xi(t + 1)− log xi(t), xi(t), xi(t− τ) > 0. (2.32d)

In particular, when the system can be characterised by differential equations, we have

δ(t, xi(t + 1)) ≜ dxi(t)
dt

= ẋi(t). (2.33)

Remark 3 Here we discuss the identification of continuous system. It should be noted that
continuous system can be covered if ẋi(t) can be obtained or assumed to estimated with
confidence. Otherwise, continuous system identification is not covered in the thesis. In
practice, estimation of the first derivative data matrix is not a trivial task. After trying
various techniques, we decided to use the techniques proposed in [48]. The details will
be given later in Section 5.6. The other issue that needs to be pointed out is how to deal
measurement noise ϵi(t) in Eq. (2.30). This issue will be discussed later in Section 5.5.

2.3.2 Some Key Assumptions

In all its generality, the formulation in Eq. (2.29) and other variations in Remark 2
encompasses a wide variety of networked models in physics, chemistry, biology,
engineering, finance and economics.

34 Nonlinear Dynamical Systems

The objective is thus to identify the possibly nonlinear functions Fi (and their
associated parameters) in (2.29) given measured noisy time series data zi in (2.30)
of the state variables xi. However, it’s too ambitious to accomplish the objective
without any assumptions. Before proposing our method, some (hopefully) mild
assumptions need to be made on the structure form of Fi; estimation or calculation of
left hand side quantity δ(·, ·); distribution and form of dynamic and/or observation
noise.

We focus on systems where our a priori knowledge about the underlying princi-
ples allows us to assume that the model will adopt a concise description in terms of
a set of candidate basis (or dictionary) functions, as is the case in many of the applica-
tions of interest in physics, chemistry, biology, engineering, finance and economics.
In particular, we make the following key assumption.

Assumption 1 xi(t) in (2.26), uj(t) in (2.27), ξk(t) in (2.28) and ϵi(t) in (2.30) are as-
sumed to be bounded and independent with each other for i = 1, . . . , nx, j = 1, . . . , nu and
k = 1, . . . , nξ.

Assumption 2 The function Fi(X(t), U(t)) can be represented as linear combinations of
dictionary functions:

φi(X(t), U(t)) =
{
φin : Rnx+nu → R

}Ni

n=1
(2.34)

such that

Fi (X(t), U(t)) =
Ni∑

n=1
βinφin(X(t), U(t)) := Φ⊤

i (t)βi, (2.35)

where Φ⊤
i (t) : RNx+Nu → RNi . It should be noted that some φin may be redundant in this

representation, i.e. βin = 0 accordingly. The set of nx such description vectors

{βi}i=1,...,nx
(2.36)

encodes the representation of the full system in terms of the dictionary functions {Φi}.

Remark 4 In Assumption 2, the basis function is assumed to be “linear in parameters”.
Though this covers a large class of system, it is still limited for some systems such as (Deep)
Neural Networks. Thereafter, we next propose Assumption 3 which is more general than
Assumption 2. However, throughout the thesis, the dynamical systems considered are
assumed as stated in Assumption 2 except those of Chapter 7.1 of Part II and future work in

2.3 Nonlinear Time-Invariant Systems 35

14. This Assumption is applied in Chapter 7 where the likelihood with exponential family
distribution.

Now we go beyond the “linear in parameters” restriction and propose the more
general Assumption 2.

Assumption 3 The function Fi(X(t), U(t)) can be represented as linear combinations of
dictionary functions:

φi(X(t), U(t), βi) =
{
φin : Rnx+nu+nβin → R

}Ni

n=1
(2.37)

such that

Fi (X(t), U(t)) =
Ni∑

n=1
φin(X(t), U(t), βin) (2.38)

where βin ∈ Rnβin . The set of
∑nx

i=1 Ni such description vectors

{βin}i=1,...,nx,n=1,...,Ni
(2.39)

encodes the representation of the full system in terms of the dictionary functions {φi}.

Next we discuss assumptions on the form of the diffusion term in (2.29).

Assumption 4 Given (2.28), the diffusion term in (2.29) can be expressed as

Gi (X(t), U(t)) ·Ξ(t) =
nξ∑

k=1

υk−1∑
τ=0

gikτ (X(t), U(t)) ξk(t− τ) (2.40)

where gikτ : RNx+Nu → R is an arbitrary bounded function, e.g., zero, monomial, etc. And
Gi is bounded as well.

Follow the linear combination representation assumption both in (2.35) and (2.38),
another key assumption is on “sparse representation”.

Assumption 5 The sets in (2.36) and (2.39) are sparse (β has many zero elements), and
the representation in (2.35) and (2.38) are sparse as well.

Remark 5 (Assumption 5) This assumption is concise but fundamental in this thesis. It
is relevant to model selection criteria such as Akaike information criterion (AIC) [3] and
Bayesian information criterion (BIC) [167].

36 Nonlinear Dynamical Systems

We make another key assumption on “full measurement”

Assumption 6 The system (2.29) is fully measurable, i.e., all the state variables xi can be
measured and there are no hidden variables in the nonlinear system.

Remark 6 (Assumption 6) Typically, only part of the state is measured [224, 223], and,
in particular, the number of hidden/unobservable nodes and their position in the network
are usually unknown. Fortunately, this may be problematic only in nonlinear system
identification but not in linear system identification. However, in economics and financial
time series modelling [122, 203, 198], asset pricing modelling [38] and the seminal paper
on Granger causality [68], the model only consist of the measured variables. Meanwhile, in
(deep) neural network systems, the model also employs complicated nonlinear embedding
from input to output.

To incorporate prior knowledge into the identification problem, it is often im-
portant to be able to impose constraints on β. In biological systems, positivity of
the parameters constituting β is an example of such constraints. The other moti-
vation for constrained optimisation comes from stability considerations. Typically,
the underlying system is known a priori to be stable, especially if this system is a
biological or physical system. A lot of stability conditions can be formulated as
convex optimisation problems, e.g. Lyapunov stability conditions expressed as
Linear Matrix Inequalities [26], Gershgorin Theorem for linear systems [89], etc.
Only few contributions are available in the literature that address the problem of
how to consider a priori information on system stability during system identification
[34, 229]. To be able to integrate constraints on β into the problem formulation, we
consider the following assumption on β.

Assumption 7 Constraints on the weights β can be described by a set of convex functions:

H
[I]
i (β) ≤ 0, i = 1, . . . , mI ,

H
[E]
j (β) = 0, j = 1, . . . , mE.

(2.41)

where the convex functions H
[I]
i : RN → R are used to define inequality constraints, whereas

the convex functions H
[E]
j : RN → R are used to define equality constraints.

2.3.3 Linear Regression Model

We first start with a simple model where the next step states only depends on the
current step states and/or inputs, i.e. discrete-time MIMO nonlinear systems with

2.3 Nonlinear Time-Invariant Systems 37

additive noise:

x(t + 1) = f(x(t), u(t)) + ξ(t), (2.42)

zi(t) = xi(t), (2.43)

and
x = [x1, . . . , xnx]⊤ ∈ Rnx

denotes the state vector;
u = [u1, . . . , unu]⊤ ∈ Rnu

denotes the input vector;

f(·) ≜ [f1(·), . . . , fnx(·)]⊤ : Rnx+nu → Rnx

denotes the nonlinear functions;

ξ = [ξ1, ξ2, . . . , ξnx]⊤ ∈ Rnx

denotes the dynamic noise vector, where ξi(t) is assumed to be Gaussian i.i.d. :

ξi(t) ∼ N (0, σ2
i)

with

E(ξi(p)) = 0,

E(ξi(p)ξi(q)) = σ2
i δpq,

δpq =

 1, p = q,

0, p ̸= q.

Under Assumptions 2 and 6, the system in (2.42) can be rewritten into the linear
regression form:

xi(t + 1) = f⊤
i (x(t), u(t))vi + ξi(t), i = 1, . . . , nx, (2.44)

where
vi = [vi1, . . . , viNi

]⊤ ∈ RNi

38 Nonlinear Dynamical Systems

is the weight vector to be identified and

f⊤
i (x(t), u(t)) = [fi1(x(t), u(t)), . . . , fiNi

(x(t), u(t))] ∈ RNi

is the vector of considered dictionary functions (which does not contain unknown
parameters).

If data samples satisfying (2.44) can be obtained from the system of interest.
When data are sampled, we assume the data matrix and first derivative/difference
data matrix satisfying (2.44) can be obtained as


x1(1) . . . xnx(1)

...
x1(M) . . . xnx(M)

 (2.45)

and 
x1(2) . . . xnx(2)

...
x1(M + 1) . . . xnx(M + 1)

 (2.46)

respectively. Now we let
yi(t) ≜ xi(t + 1),

model (2.42) can be written as

yi = Ψivi + Ξi, i = 1, . . . , nx, (2.47)

with
yi ≜ [yi(1), . . . , yi(M)]⊤ ∈ RM×1,

Ψi ≜


fi1(x(1), u(1)) . . . fiNi

(x(1), u(1))
...

fi1(x(M), u(M)) . . . fiNi
(x(M), u(M))

 ∈ RM×Ni ,

vi ≜ [vi1, . . . , viNi
]T ∈ RNi×1,

Ξi ≜ [ξi(1), . . . , ξi(M)]⊤ ∈ RM×1.

(2.48)

We want to find vi given the measured noisy data stored in yi. This is a typical linear
regression problem that can be solved using standard least square approaches, pro-
vided that the structure of the nonlinearities in the model are known, i.e., provided
that Ψi is known.

2.3 Nonlinear Time-Invariant Systems 39

In what follows we gather in a matrix Xi similar to Ψi the set of all candi-
date/possible basis functions. This is an equivalent augmentation of (2.44) by
introducing “redundant” terms with corresponding parameters be zero in the rep-
resentation. Due to such expansion of the dictionary matrix, vi will be substituted
by a new parameter vector βi. The issues on the selection of basis functions will be
discussed later in Section 5.2. Now we consider:

yi = Xiβi + Ξi, i = 1, . . . , nx. (2.49)

The solution β̂i to (2.49) is typically going to be sparse due to the potential introduc-
tion of non-relevant and/or non-independent dictionary functions in Xi.

Example 2 As an illustrative example, we consider the following model of polynomial terms
for a single-input single-output (SISO) nonlinear autoregressive system with exogenous
input (NARX model) [112]:

x(t + 1) = 0.7x5(t)x(t− 1)− 0.5x(t− 2) + 0.6u4(t− 2)− 0.7x(t− 2)u2(t− 1) + ξ(t),
(2.50)

with x, u, ξ ∈ R. Then we can write an extended form

x(t + 1) = w1 + w2x(t) + . . . + wmx+2x(t−mx) + . . . + wNxdx(t−mx)udu(t−mu) + ξ(t)
= β⊤f(x(t), . . . , x(t−mx), u(t), . . . , u(t−mu)) + ξ(t),

where dx (resp. du) is the degree of the output (resp. input); mx (resp. mu) is the maximal
memory order of the output (resp. input); β⊤ = [w1, . . . , wN] ∈ RN is the weight vector;
and

f(x(t), . . . , x(t−mx), u(t), . . . , u(t−mu)) = [f1(·), . . . , fN(·)]⊤ ∈ RN

is the dictionary functions vector. Then for the NARX model (2.50), we can find dx = 5,
du = 4, mx = 2, mu = 2. To define the dictionary matrix, we consider all possible monomials
up to degree dx = 5 (resp. du = 4) and up to memory order mx = 5 (resp. mu = 2) in x

(resp. u). which gives f(·) ∈ R1960 thus β ∈ R1960. Since v ∈ R4, only 4 out of the 1960
associated weights wi are nonzero.

Since the nx linear regression problems in (2.49) are independent, for simplicity
of notation, we omit the subscript i in (2.49) and write

y = Xβ + Ξ. (2.51)

40 Nonlinear Dynamical Systems

As indicated in Example 2, a large number of candidate basis functions can be
considered to construct X. This means that the number of columns N of X tends to
be very large. Meanwhile, the time-series measurements collected are quite limited.
To find the sparsest solution is desirable but NP-hard and numerically unstable.

2.3.4 Additional Experiment Designs

During the identification process, additional experiments can be performed to make
the data set and the data-dependent dictionary matrix more informative for iden-
tification (see Sec. 13 of [117]). To ease notation, we assume the same amount of
measurements are sampled for each new experiment. The equation with superscript
[0] denotes the initial experiment. For simplicity, we consider in particular on the
discrete-time dynamical system

xi(t + 1) = f⊤
i (x(t), u(t))vi + ξi(t), i = 1, . . . , nx, (2.52)

Additional Excitation Signals Applied to the Inputs of the System Suppose
there are nd different excitation signals u[k], k = 0, . . . , nd, applied to the inputs
of the system. We can then expand (2.52) as:



x
[0]
i (t + 1) = f⊤

i (x[0](t), u[0](t))vi + ξ
[0]
i (t),

x
[1]
i (t + 1) = f⊤

i (x[1](t), u[1](t))vi + ξ
[1]
i (t),

...
...

x
[nd]
i (t + 1) = f⊤

i (x[nd](t), u[nd](t))vi + ξ
[nd]
i (t).

(2.53)

We stack all input and output data together and define

yi ≜


y[0]

i

y[1]
i
...

y[nd]
i

 ∈ RM ·(nd+1)×1, Ψi ≜


Ψ[0]

i

Ψ[1]
i
...

Ψ[nd]
i

 ∈ RM ·(nd+1)×Ni ,

vi ≜


vi1
...

viNi

 ∈ RNi×1, Ξi ≜


Ξ[0]

i

Ξ[1]
i
...

Ξ[nd]
i

 ∈ RM ·(nd+1)×1, (2.54)

2.3 Nonlinear Time-Invariant Systems 41

where

y[j]
i ≜

[
x

[j]
i (1), . . . , x

[j]
i (M)

]T
∈ RM×1,

Ψ[j]
i ≜


fi1(x[j](0), u[j](0)) . . . fiNi

(x[j](0), u[j](0))
...

...
...

fi1(x[j](M − 1), u[j](M − 1)) . . . fiNi
(x[j](M − 1), u[j](M − 1))


∈ RM×Ni ,

Ξ[j]
i ≜

[
ξ

[j]
i (0), . . . , ξ

[j]
i (M − 1)

]T
∈ RM×1.

Using the notation above, system (2.53) can be written as yi = Ψivi + Ξi, i =
1, . . . , nx, which has the same form as (2.47).

Perturbation Experiments This case refers to perturbations of the weights vi that
leads to variations in the outputs of the system.1 In this situation, we can write the
following equations



x
[0]
i (t + 1) = f⊤

i (x[0](t), u(t))vi + ξ
[0]
i (t),

x
[1]
i (t + 1) = f⊤

i (x[1](t), u(t))(vi + ∆v[1]
i) + ξ

[1]
i (t),

...
...

x
[nd]
i (t + 1) = f⊤

i (x[nd](t), u(t))(vi + ∆v[nd]
i) + ξ

[nd]
i (t).

(2.55)

Similar to the formulation for additional excitation signals applied to the inputs in
(2.54), we stack all input and output data and define

yi ≜


y[0]

i

y[1]
i
...

y[nd]
i

 ∈ RM ·(nd+1)×1, Ψi ≜


Ψ[0]

i 0M×Ni
. . . 0M×Ni

Ψ[1]
i Ψ[1]

i . . . 0M×Ni

...
...

Ψ[nd]
i 0M×Ni

. . . Ψ[nd]
i

 ∈ RM ·(nd+1)×Ni ,

vi ≜


v[0]

i

∆v[1]
i

...
∆v[nd]

i

 ∈ RNi×1, Ξi ≜


Ξ[0]

i

Ξ[1]
i
...

Ξ[nd]
i

 ∈ RM ·(nd+1)×1, (2.56)

1In molecular biology experiments, this corresponds to the situation where the expression of one
or more of an organism’s genes is reduced through genetic manipulations.

42 Nonlinear Dynamical Systems

where

y[j]
i ≜

[
x

[j]
i (1), . . . , x

[j]
i (M)

]T
∈ RM×1,

Ψ[j]
i ≜


fi1(x[j](0), u(0)) . . . fiNi

(x[j](0), u(0))
...

...
...

fi1(x[j](M − 1), u(M − 1)) . . . fiNi
(x[j](M − 1), u(M − 1))

 ∈ RM×Ni ,

∆v[j]
i ≜

[
∆v

[j]
i1 , . . . , ∆v

[j]
iNi

]⊤
∈ RNi×1,

Ξ[j]
i ≜

[
ξ

[j]
i (0), . . . , ξ

[j]
i (M − 1)

]T
∈ RM×1,

and let ∆v[0]
i = 0Ni

. Using the notation above, we can again write the formulation
as yi = Ψivi + Ξi, i = 1, . . . , nx, which is similar to (2.47).

Knockout Experiment The term “Knockout” comes from “gene knockout” in
molecular biology when certain organism’s genes are knocked out of the organism.
If one state variable xj is knocked out, all the dictionary functions that involved xj

will be excluded from the dictionary matrix or set to zero. The model structure and
connections among other state variables will remain unchanged. This also applies to
the deletion of multiple state variables. Recall the definition of the dictionary func-
tion vector: fi(x(t), u(t)) = [fi1(x(t), u(t)), . . . , fiNi

(x(t), u(t))]⊤ ∈ RNi , and further
define the subset index Ij ⊂ {1, 2, . . . , n} containing the indices of the knocked out

variables during knockout experiment j. f
[I−

j]
i (·) denotes the vector/matrix formed

by the elements/columns of fi(·) with indices in Ij set to zeros. The data collected
through knockout experiments can then be seen to satisfy the following equations



x
[0]
i (t + 1) = f [I−

0]
i

⊤
(x[0](t), u[0](t))vi + ξ

[0]
i (t),

x
[1]
i (t + 1) = f [I−

1]
i

⊤
(x[1](t), u[1](t))vi + ξ

[1]
i (t),

...
...

x
[nd]
i (t + 1) = f [I−

nd
]

i

⊤
(x[nd](t), u[nd](t))vi + ξ

[nd]
i (t).

(2.57)

2.3 Nonlinear Time-Invariant Systems 43

Similar to the formulation for additional excitation signals in (2.54) and perturbation
experiments in (2.56), we stack all input and output data and define

yi ≜


y[0]

i

y[1]
i
...

y[nd]
i

 ∈ RM ·(nd+1)×1, Ψi ≜



Ψ[I−
0]

i

Ψ[I−
1]

i
...

Ψ[I−
nd

]
i

 ∈ RM ·(nd+1)×Ni ,

vi ≜


vi1
...

viNi

 ∈ RNi×1, Ξi ≜


Ξ[0]

i

Ξ[1]
i
...

Ξ[nd]
i

 ∈ RM ·(nd+1)×1, (2.58)

where

y[j]
i ≜

[
x

[j]
i (1), . . . , x

[j]
i (M)

]T
∈ RM×1,

Ψ
[I−

j]
i ≜


fi1(x[j](0), u[j](0)) . . . fiNi

(x[j](0), u[j](0))
...

...
...

fi1(x[j](M − 1), u[j](M − 1)) . . . fiNi
(x[j](M − 1), u[j](M − 1))


∈ RM×Ni ,

Ξ[j]
i ≜

[
ξ

[j]
i (0), . . . , ξ

[j]
i (M − 1)

]T
∈ RM×1.

It should be noted that certain columns of Ψ
[I−

j]
i indexed by Ij would be zero columns.

Again, using the above notation, we obtain the formulation yi = Ψivi + Ξi, i =
1, . . . , nx, which has the same form as (2.47).

Remark 7 From the above analysis, we can re-formulate the data coming from the additional
experiments (replicates, perturbation, knock-out) to the standard form yi = Ψivi + Ξi (with
different matrix dimensions). In the next Section, we shall propose a solution to such
problems.

44 Nonlinear Dynamical Systems

2.4 Linear Regression Problem

2.4.1 Regression Problem Statement

Since the nx linear regression models in Eq. (2.49) are independent, for simplicity of
notation, we omit the subscript i used to index the state variable and simply write:

y = Xβ + Ξ. (2.59)

We assume the stochastic term Ξ is Gaussian i.i.d. Further discussion on the distri-
bution on Ξ can be found in Section 5.4. The identification problem can be formally
stated as follows:

Problem 2 (Consistency) Given y and X over the interval [1, M], find a coefficient vector
β such that (2.51) holds for all t ∈ [1, M].

Since the stochastic term Ξ is under the Gaussian i.i.d assumption, the basic consis-
tency result is almost immediate under quadratic criteria, i.e. using ordinary least
square (OLS)

min
β

1
2∥y−Xβ∥2

2. (2.60)

However, it is clear that this problem is not well-posed and has infinitely many
solutions. For instance, one can always find a trivial model with a large order
or/and a large number of (nonlinear) basis functions that perfectly fits the data,
which is known to be overfitting. To avoid the overfitting issue, f(x(t)) is usually
favoured to be sparsely represented . Then Problem 2 can be modified with the
following formal statement:

Problem 3 (A minimum number of basis functions) Given y and X over the interval
[1, M] and a prior selection of a set of N dictionary functions, find a coefficient vector β

with a minimum number of nonzero entries such that (2.51) holds for all t ∈ [1, M].

2.4.2 Nonconvex Optimisation Problem

To enforce a minimum number of nonzero entries in β, we can arrive at the following
famous sparse signal recovery problem as we discussed in Section 1.3 by adding the
penalty term λ∥β∥ℓ0

min
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ0 , (2.61)

2.4 Linear Regression Problem 45

where λ is the regularisation parameter.

2.4.3 Convex Relaxation

Again, as we discussed in Chapter 1.3, we replace ∥β∥ℓ0 in the optimisation above
by ∥β∥ℓ1 . The idea behind this relaxation is the fact that the ℓ1 norm is the convex
envelope of the ℓ0 norm, and thus, in a sense, minimising the former yields the best
convex relaxation to the (non-convex) problem of minimizing the latter. It gives

min
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ1 . (2.62)

Remark 8 We notice that there is a hyperparameter λ which needs to be specified a priori
or tuned manually. λ is known as regularisation parameter. The selection of optimal
regularisation parameter is an open problem in machine leaning and statistics and has
been discussed in any machine learning textbook. Without otherwise specified, we use
cross-validation for choice of the optimal λ [22, 79, 127].

Chapter 3

Nonlinear Dynamical System with
Heterogeneous Datasets

48 Nonlinear Dynamical System with Heterogeneous Datasets

3.1 Introduction

The problem of identifying biological networks from experimental time series data
is of fundamental interest in systems and synthetic biology. For example, such
information can aid in the design of drugs or of synthetic biology genetic controllers.
Tools from system identification [117] can be applied for such purposes. However,
most system identification methods produce estimates of model structures based on
data coming from a single experiment.

The interest in identification methods able to handle several datasets simultane-
ously is twofold. Firstly, with the increasing availability of “big data” obtained from
sophisticated biological instruments, e.g. large ‘omics’ datasets, attention has turned
to the efficient and effective integration of these data and to the maximum extraction
of information from them. Such datasets can contain (a) data from replicates of an
experiment performed on a biological system of interest under identical experimen-
tal conditions; (b) data measured from a biochemical network subjected to different
experimental conditions, for example, different biological inducers, temperature,
stress, optical input, gene knock-out and over-expression, etc. The challenges for
simultaneously considering heterogeneous datasets during system identification
are: (a) the system itself is unknown, i.e. neither the structure nor the corresponding
parameters are known; (b) it is unclear how heterogeneous datasets collected under
different experimental conditions influence the “quality” of the identified system.

Secondly, in control or synthetic biology applications the systems to be controlled
typically need to be modelled first. Highly detailed or complex models are typically
difficult to handle using rigorous control design methods. Therefore, one typically
prefers to use simple or sparse models that capture at best the dynamics expressed in
the collected data. The identification and use of simple or sparse models inevitably
introduces model class uncertainties and parameter uncertainties [98, 201]. To assess
these uncertainties replicates of multiple experiments is typically necessary.

Our approach is based on the concept of sparse Bayesian learning [191, 214] and
on the definition of a unified optimisation problem allowing the consideration of
different parameter values for different experimental conditions, and whose solution
is a model consistent with all datasets available for identification. The ability to
consider various datasets simultaneously can potentially avoid non-identifiability
issues arising when a single dataset is used [93]. Furthermore, by comparing the
identified parameter values associated with different conditions, we can pinpoint
the influence specific experimental changes have on system parameters. In should

3.2 Linear Regression Model 49

be noted that there are similarities between our approach to nonlinear random
effects models and recent work in the area of generalized linear models (GLIM) for
longitudinal data (e.g., Stiratelli et al., 1984; Liang and Zeger, 1986).

In this Chapter, we will extend the regression model in Chapter 2, to deal with
multiple datasets. In Section 3.2, we will give the regression problem formulation for
the nonlinear SYSID problem from multiple experiments. The regression problem is
further formulated as a ℓ0 type optimisation problem in Section 3.3.2 and a tentative
empirical ℓ1 relaxation is proposed in Section 3.3.3. The algorithms for this Chapter
will be provided in Section 6.7 of Chapter 6.

3.2 Linear Regression Model

In Section 2.3.3, we introduced the linear regression model in (2.49) for single dataset
modelling. Suppose a total number of C datasets are collected from C independent
experiments, we put a subscript [c] to index the identification problem associated
with the specific dataset obtained from experiment [c]. The linear regression problem
(2.49) for single dataset can be rewritten as

y[c] = X[c]β[c] + ξ[c], c = 1, . . . , C, (3.1)

in which,
X[c] ≜

[
X[c]

:,1, . . . , X[c]
:,N

]

=


f1(x[c](1)) . . . fN(x[c](1))

...
...

f1(x[c](M [c])) . . . fN(x[c](M [c]))


∈ RM [c]×N ,

β[c] ≜
[
w

[c]
1 , . . . , w

[c]
N

]⊤
∈ RN ,

ξ[c] ≜
[
ξ[c](1), . . . , ξ[c](M [c])

]⊤
∈ RM [c]

,

(3.2)

where x[c](t) =
[
x

[c]
1 (t), . . . , x[c]

nx(t)
]
∈ Rnx is the state vector at time instant t. It

should be noted that N , the number of basis functions or number of columns of the
dictionary matrix X[c] ∈ RM [c]×N , can be very large. Without loss of generality, we
assume M [1] = · · · = M [C] = M . The solution to β[c] to (3.1) is typically going to be
sparse, which is mainly due to the potential introduction of non-relevant and/or
non-independent basis functions in X[c].

50 Nonlinear Dynamical System with Heterogeneous Datasets


y[1]

...
y[C]

 =


X[1]

:,1 . . . X[1]
:,N

. . .
X[C]

:,1 . . . X[C]
:,N


︸ ︷︷ ︸

C Blocks


β[1]

...
β[C]

+


ξ[1]

...
ξ[C]



=


X[1]

:,1 X[1]
:,N

.
X[C]

:,1 X[C]
:,N


︸ ︷︷ ︸

N Blocks



w
[1]
1
...

w
[C]
1
...

w
[1]
N
...

w
[C]
N


+


ξ[1]

...
ξ[C]



=
[

X1 · · · XN

] 
β1
...

βN

+


ξ[1]

...
ξ[C]

 .

(3.3)

To ensure reproducibility, experimentalists repeat their experiments under the
same conditions, and the collected data are then called “replicates”. Typically,
only the average value over these replicates is used for modelling or identification
purposes In this case, however, only the first moment is used and information
provided by higher order moments is lost. Moreover, when data originate from
different experimental conditions, it is usually very hard to combine the datasets into
a single identification problem. This Section will address these issues by showing
how several datasets can be combined to define a unified optimisation problem
whose solution is an identified model consistent with the various datasets available
for identification.

To consider heterogeneous datasets in one single formulation, we stack the vari-
ous equations in (3.1) (see Eq. (3.3)). Each stacked equation in Eq. (3.3) corresponds
to a replicate or an experiment performed by changing the experimental conditions
on the same system.

In Eq. (3.3), for n = 1, . . . , N ,

Xn = blkdiag[X[1]
:,n, . . . , X[C]

:,n], βn = [w[1]
n , . . . , w[C]

n]⊤.

3.3 Linear Regression Problem 51

Based on the stacked formulation given in Eq. (3.3) we further define

y =


y[1]

...
y[C]

 , X =
[

X1 · · · XN

]
,

β =


β1
...

βN

 , ξ =


ξ[1]

...
ξ[C]

 ,

(3.4)

which gives
y = Xβ + ξ. (3.5)

This yields a formulation very similar to that presented previously for a single linear
regression problem. However, in the multi-experiment formulation (9.8), there is
now a special block structure for y, X and β.

Remark 9 When β[c] is fixed to be β for all the experiments, i.e. β[1] = · · · = β[C] =
β, we can formulate the identification problem as a single linear regression problem by
concatenation: 

y[1]

...
y[C]

 =


X[1]

...
X[C]

β +


ξ[1]

...
ξ[C]

 . (3.6)

3.3 Linear Regression Problem

3.3.1 Regression Problem Statement

Since the nx linear regression models in Eq. (3.3) are independent, for simplicity of
notation, we omit the subscript i used to index the state variable and simply write:

y = Xβ + Ξ. (3.7)

We assume the stochastic term Ξ is Gaussian i.i.d. Further discussion on the distri-
bution on Ξ can be found in Section 5.4. The identification problem can be formally
stated as follows which is similar to the one in Section 2.4:

Problem 4 (Consistency) Given y and X over the interval [1, M], find a coefficient vector
β such that (3.3) holds for all t ∈ [1, M].

52 Nonlinear Dynamical System with Heterogeneous Datasets

Since the stochastic term Ξ is under the Gaussian i.i.d assumption, the basic consis-
tency result is almost immediate under quadratic criteria, i.e. using ordinary least
square (OLS)

min
β

1
2∥y−Xβ∥2

2. (3.8)

However, it is clear that this problem is not well-posed and has infinitely many
solutions. For instance, one can always find a trivial model with a large order
or/and a large number of (nonlinear) basis functions that perfectly fits the data,
which is known to be overfitting. The “sparse” idea will be again used to avoid
overfitting issue. However, a slightly differently from the strategy proposed in
Section 2.4, the Problem 4 can be modified with the following formal statement:

Problem 5 (A minimum number of basis functions) Given y and X over the interval
[1, M] and a prior selection of a set of N dictionary functions, find a coefficient vector β

with a minimum number of basis functions such that (3.3) holds for all t ∈ [1, M].

3.3.2 Nonconvex Optimisation Problem

To achieve a minimum number of basis functions, we will try to find a coefficient
vector β = [β1, . . . , βN]⊤ with a minimum number of nonzero blocks βi, ∀i =
1, . . . , N such that (3.3) holds for all t ∈ [1, M]. We can arrive at the following
regularised regression problem

min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥∥βn∥ℓ2∥ℓ0 , (3.9)

where λ is the regularisation parameter.

The penalty term ∥∥βi∥ℓ2∥ℓ0 seems a bit complicated, we will give some explana-
tions. Since βn = [w[1]

i , . . . , w[C]
n]⊤, for n = 1, . . . , N , we have

∥βn∥ℓ2 =
√

(w[1]
n)2 + . . . + (w[C]

n)2, (3.10)

it means ∥βi∥ℓ2 = 0 if and only if w
[c]
i = 0, ∀c = 1, . . . , C. Therefore,

∑N
i=1 ∥∥βi∥ℓ2∥ℓ0

counts the number of basis functions.

3.3 Linear Regression Problem 53

3.3.3 Convex Relaxation

Again, similar as we discussed in Section 2.4.3, we replace ∥∥βn∥ℓ2∥ℓ0 in the optimisa-
tion above by ∥∥βn∥ℓ2∥ℓ1 = ∥βi∥ℓ2 . The idea behind this relaxation is the fact that the
ℓ1 norm is the convex envelope of the ℓ0 norm, and thus, in a sense, minimising the
former yields the best convex relaxation to the (non-convex) problem of minimizing
the latter. It gives

min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥βn∥ℓ2 , (3.11)

This minimisation problem is known as Group Lasso.

Chapter 4

Time-Varying Dynamical System

56 Time-Varying Dynamical System

4.1 Introduction

Identification of switched systems, which are characterised by the interaction of both
continuous and discrete dynamics, is widely used in many different fields such as
systems/synthetic biology, econometrics, finance, biochemical engineering, social
networks, etc. In this Section, we are interested in the identification of regime switch
dynamical systems. Biochemical processes can go through different phases in time;
for example, a cell cycle in bacteria or diurnal alternations in plants. These switches
are typically triggered by time dependent processes or by some external force.
Therefore, the dynamics of biochemical reactions can be modelled as a collection
of submodels amongst which switches occur over time. For biochemical reaction
networks, the submodels are typically nonlinear due to mass action kinetics.

In classical switched system identification, the submodels are typically assumed
to be linear or of the switch affine type [144], which is often used to approximate
nonlinear dynamics. In [132], the structure of submodels is fixed and a minimal
number of switches between submodels is inferred. However, these techniques are
not generally applicable to biochemical kinetics due to highly nonlinear terms and
model complexity. In the nonlinear case, there is an additional problem of nonlinear
basis selection, which is fixed and predefined in the linear case. Unlike the linear
case, the number of nonlinear basis functions can be infinite and one might have to
use complicated nonlinear functions to model the dynamics without any switches.
In practice, if one is interested in obtaining the least number of switches, the number
of nonlinear basis functions will typically grow, and vice versa, a small number of
nonlinear basis functions will result in many switches. Hence there are two different
and competing minimisation criteria: the number of switches between submodels
and the number of basis functions in each submodel.

In the first part of this Chapter, we will extend the regression model in Chapter 2
and 3, to deal with time-varying systems. In Section 4.3, we will give the regression
problem formulation for the nonlinear SYSID problem of time-varying systems.
The regression problem is further formulated as a ℓ0 type optimisation problem by
minimising the number of parameters and the number of switches in Section 4.4.2.
A tentative empirical ℓ1 relaxation is proposed in Section 4.4.3. The algorithms for
this Chapter will be provided in Section 6.8 of Chapter 6.

In the second part of the Chapter, we revisit the problem of trend filtering

4.2 Regime-Switch Dynamical System 57

4.2 Regime-Switch Dynamical System

4.2.1 Scalar Linear Regime-Switch Systems

Without loss of generality and to ease notations, we will consider switched autore-
gressive exogenous (SARX) hybrid affine models with single input and single output
(SISO-SARX) of the form:

y(t) =
na∑
i=1

ai(αt)y(t− i) +
nb∑

i=1
bi(αt)u(t− i) + f(αt) + η(t) (4.1)

where u, y and η denote the input, output, and noise, respectively, and where
t ∈ [t0, T]. The discrete variable αt ∈ {1, . . . , s} - the mode of the system - indicates
which of the s submodels is active at time t. The time instants where the value of αt

changes are called discrete transitions or switches. These switches partition the interval
[0, M] into a discrete hybrid time set [121], τ = {Ii}k

i=0, such that αt is constant within
each subinterval Ii = [τi, τ ′

i] and different in consecutive intervals. In the sequel, we
denote by τi and τ ′

i the beginning and ending times of the i-th interval, respectively.
Clearly, τ satisfies

• τ0 = 01, and τ ′
k = M ,

• τi ≤ τ ′
i = τi+1 − 1,

and the number of switches is equal to k.

An equivalent representation of is in the following linear regression form

y(t) = ϕ⊤(t)θ(αt) + η(t) (4.2)

where the regressor vector is

ϕ⊤ =
[
y(t− 1), . . . , y(t− na), u(t− 1), . . . , u(t− nb) 1

]
and the unknown coefficient vector at time t is

θ(αt) =
[
a1(αt), . . . , ana(αt), b1(αt), . . . , bnb

(αt), f(αt)
]

1Since it is not possible to deduce information for t < max(na, nb) when the initial condition are
unknown, in the identification problem we take t0 = max(na, nb)

58 Time-Varying Dynamical System

4.2.2 Multivariate Regime-Switch Nonlinear Systems

As we have done in Chapter 2, for nonlinear multivariate hybrid systems, subsys-
tems are modelled by nonlinear function for the i-th state variable.

δ(xi(t)) = fαt (x(t), . . . , x(t− na), u(t), . . . , u(t− nb)) + ξ(t), (4.3)

where t ∈ [t0, M]. δ(·) is defined as in (2.29) The discrete variable αt ∈ {1, . . . , s} -
the mode of the system - indicates which of the s submodels is active at time instant
t. The time instants where the value of αt changes are call discrete transitions or
switches. These switches partition the interval [0, M] into a discrete hybrid time set
[121], τ = {Ii}k

i=0, such that αt is constant within each subinterval Ii = [τi, τ ′
i] and

different in consecutive intervals. In the sequel, we denote by τi and τ ′
i the beginning

and ending times of the i-th interval, respectively. Clearly, τ satisfies

• τ0 = 0, and τ ′
k = M ,

• τi ≤ τ ′
i = τi+1 − 1,

and the number of switches is equal to k.
We assume fαt(·) can be expanded as a linear combination of finite basis functions.

Formally, similar as Assumption 2, we have

Assumption 8 The function terms fαt(·) in (4.3) can be represented as a linear combina-
tions of several dictionary functions:

fαt(·) =
N∑

i=1
θi(αt)fi(·), (4.4)

where θi(αt) ∈ R and fi(x(t)) : Rna+
∑m

i=1 nbi → Rnx are smooth functions that are assumed
to govern the dynamics.

For simplicity, we let na = 0 and input u = 0. By letting

y(t) = δ(xi(t))

and under Assumption 8, an equivalent linear regression model of (4.3) is

y(t) =
(
f1(x(t)) . . . fN(x(t)

)
· βαt + ξ(t), (4.5)

where fj(x(t) : Rna+
∑m

i=1 nbi → Rnx .

4.3 Linear Regression Model 59

Denote Ii is a subset of τ = {Ii}k
i=0. And Ii ∩ Ij = ∅, ∀i ̸= j and I1 ∪ . . . ∪ Is = τ .

The discrete transition αt depends on the time instant t, i.e.

fαt(x) =


f1(x) =

(
f1(x(t)) . . . fN(x(t)

)
· β1, if t ∈ I1

...
...

fs(x) =
(
f1(x(t)) . . . fN(x(t)

)
· βs, if t ∈ Is

. (4.6)

In each mode, the submodel fj is a smooth function. Therefore, the underlying
assumption on models with the number of switches s is relatively small

s ≤ k ≪M. (4.7)

4.3 Linear Regression Model

Define the following block matrix and vectors, for i = 1, . . . , nx

yi ≜ [y(1), . . . , y(M)]⊤ ,

Xi ≜


f1(x(1)) · fN(x(1))

.

f1(x(M)) · fN(x(M))


=
[

A1 . . . AN

]
∈ RM×MN ,

βi ≜
[

βi1(1), . . . , βi1(M) . . . βiN(1), . . . , βiN(M)
]⊤

=
[

β⊤
i1 . . . β⊤

iN

]⊤
∈ RMN ,

Ξi ≜ [ξ(1), . . . , ξ(M)]⊤ ∈ RM .

(4.8)

It should be noted that the stochastic term is Gaussian i.i.d with covariance matrix
σ2I. We can then formulate the following linear regression problem

yi = Xiβi + Ξi. (4.9)

There are two issues that need to be considered at this stage. First, each block
βin = [win(1), . . . , win(M)] is associated only with certain dictionary function. The
solution β̂i to (4.9) is therefore typically going to be block sparse, which is mainly
due to the potential introduction of non-relevant and/or non-independent basis
functions in X. Second, in the switched case, we have to penalise the number of

60 Time-Varying Dynamical System

switches from t1 to tM and/or the number of modes Nmodes, which can be fixed
in advance or set equal to M . Clearly such a problem has an infinite number of
solutions, especially in the noisy setting. Therefore, we refine the problem statement
to identify the system (4.9) with the least number of non-zero entries in βi and the
least number of switches in the sequence αt.

These are actually two different and competing criteria: if we want the least
number of switches, the number of non-zero parameters in βi will grow, and vice
versa, a small number of non-zero parameters in βi will result in many switches.

4.4 Linear Regression Problem

4.4.1 Regression Problem Statement

Since the nx linear regression models in Eq. (4.8) are independent, for simplicity of
notation, we omit the subscript i used to index the state variable and simply write:

y = Xβ + Ξ. (4.10)

We assume the stochastic term Ξ is Gaussian i.i.d. Further discussion on the distri-
bution on Ξ can be found in Section 5.4. The identification problem can be formally
stated as follows which is similar to the one in Section 2.4 and 3.3:

Problem 6 (Consistency) Given y and X over the interval [1, M], find a coefficient vector
β such that (4.9) holds for all t ∈ [1, M].

Since the stochastic term Ξ is under the Gaussian i.i.d assumption, the basic consis-
tency result is almost immediate under quadratic criteria, i.e. using ordinary least
square (OLS)

min
β

1
2∥y−Xβ∥2

2. (4.11)

It is clear that this problem is not well-posed and has infinitely many solutions. For
instance, one can always find a trivial piecewise affine model with M submodels
or on model with a large order or/and a large number of (nonlinear) dictionary
functions that perfectly fits the data, which is known to be overfitting. This situation
can be partially avoided by imposing upper bounds ny and nui

, i = 1, . . . , m, on the
order of each of the terms on the right hand side of (4.3), e.g., na ≤ ny, nci

≤ nui
.

Still, even in this case the problem admits multiple solutions, especially when ny

4.4 Linear Regression Problem 61

and nui
are very large. More interesting problems can be posed by using the existing

degrees of freedom to optimise suitable performance criteria. One such criterion
is to minimise the number of switches (i.e., the minimum number of k), subject to
consistency. Under this criterion, the hybrid system is better characterised by (4.6),
where s ≤ k ≪ M.. The formal statement of the identification problem with this
criterion is as follows:

Problem 7 (A minimum number of switches) Given y and X over the interval [1, M]
and a prior selection of a set of N basis functions, find a coefficient vector β as in (4.8) with
a minimum number of switches, such that (4.9) holds for all t ∈ [1, M].

To further avoid the overfitting issue, fαt(x(t)) is usually favoured to be sparsely
represented, like we discussed in the previous Chapters. Thus other criterion is
to minimise number of same type of dictionary functions. Then Problem 6 can be
modified with the following formal statement:

Problem 8 (A minimum number of basis functions) Given y and X over the interval
[1, M] and a prior selection of a set of N basis functions, find a coefficient vector β as in (4.8)
with minimum number of basis functions, such that (4.9) holds for all t ∈ [1, M].

Now we can consider Problem 7 and Problem 8 simultaneously and state that

Problem 9 Given y and X and the block partitions formulated in (4.9), find a β that can
explain the data with the minimal number of switches and the minimal number of non-zero
blocks in β.

4.4.2 Nonconvex Optimisation Problem

If we index the vector β appropriately, the problem of minimising the number
of switches can be formulated by enforcing Dnβn sparse, where the matrix Dn is
defined as follows:

Dn ≜


1 −1

.

1 −1

 ∈ R(M−1)×M . (4.12)

Problem 7 can be formulated as follows

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ0 , (4.13)

62 Time-Varying Dynamical System

where λ1 in (4.13) is the regularisation parameter in this penalised linear regression
problems.

Considering β =
[

β⊤
1 . . . β⊤

N

]⊤
as in (4.8) is block-wise defined, the problem

of minimising the number of basis functions can be formulated by enforcing β with a
minimum number of nonzero blocks βn, n = 1, . . . , N , Problem 8 can be formulated
as follows

min
β

1
2∥y−Xβ∥2

2 + λ2

N∑
n=1
∥∥βn∥ℓ2∥ℓ0 , (4.14)

Since
∥βn∥ℓ2 ≤ ∥βn∥ℓ1 ,

we can have a bit more ambitious target

min
β

1
2∥y−Xβ∥2

2 + λ2

N∑
n=1
∥∥βn∥ℓ1∥ℓ0 , (4.15)

Here we may prefer (4.14) to (4.15) since the former has clearer interpretation in the
dynamical model and less computation challenge than (4.15).

Based on the formulation in (4.13) and (4.14) , we can have the following regres-
sion problem for Problem 9

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ0 + λ2

N∑
n=1
∥∥βn∥ℓ2∥ℓ0 , (4.16)

The first regulariser λ1
∑N

n=1 ∥Dnβn∥ℓ0 penalise the number of switches that occur;
and the second regulariser λ2

∑N
n=1 ∥∥βn∥ℓ2∥ℓ0 the number of non-zero element in

every identified model.

4.4.3 Convex Relaxation

Again, similar as we discussed in Section 2.4.3 and 3.3.3, we replace the ℓ0 with ℓ1

in the optimisation problem (4.13), (4.14) and (4.25), we can reach to the following
empirical convex relaxations. For (4.13), the relaxation is

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ1 . (4.17)

4.5 Models with Abrupt Change 63

or we can write in a more compact form by defining

D = blkdiag (D1, . . . , DN) , (4.18)

as
min

β

1
2∥y−Xβ∥2

2 + λ1∥Dβ∥ℓ1 . (4.19)

For (4.14), the relaxation is

min
β

1
2∥y−Xβ∥2

2 + λ2

N∑
n=1
∥∥βn∥ℓ2∥ℓ1 , (4.20)

or

min
β

1
2∥y−Xβ∥2

2 + λ2

N∑
n=1
∥βn∥ℓ2 . (4.21)

For (4.16), the relaxation is

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ1 + λ2

N∑
n=1
∥βn∥ℓ2 (4.22)

Algorithms minimising the number of non-zero elements and the number of
switches, i.e. (4.22), belong to the class of so-called fused Lasso algorithms [189]. For
general D matrices, the problem defined in (4.19) and (4.22) would be solved using
generalised Lasso algorithms [190].

4.5 Models with Abrupt Change

4.5.1 Trend Filtering

We are given a scalar time series y(t), t = 1, . . . , M , assumed to consist of an under-
lying slowly varying trend β(t). The problem we want to solve is to estimate the
random component z(t) = y(t) − β(t). This can be considered as an optimisation
problem with two competing objectives: we want β(t) to be smooth, and we want
z(t) (our estimate of the random component, sometimes called the residual), to be
small. In some contexts, estimating β(t) is called smoothing or filtering.

In [101], an ℓ1 trending filter is proposed and a comprehensive review on the
state-of-art of trend filtering is introduced. Trend filtering comes up in several
applications and settings including macroeconomics (e.g., [87, 172]), geophysics (e.g.,
[13, 23, 24]), financial time series analysis (e.g., [198]), social sciences (e.g., [114]),

64 Time-Varying Dynamical System

revenue management (e.g., [186]), and biological and medical sciences (e.g., [71, 115]).
Many trend filtering methods have been proposed, including Hodrick-Prescott (H-
P) filtering [87, 113], moving average filtering [131], exponential smoothing [120],
bandpass filtering [37, 18], smoothing splines [160], de-trending via rational square-
wave filters [157], a jump process approach [236], median filtering [206], a linear
programming (LP) approach with fixed kink points [126], and wavelet transform
analysis [42]. (All these methods except for the jump process approach, the LP
approach, and median filtering are linear filtering methods; see [18] for a survey
of linear filtering methods in trend estimation.) The most widely used methods
are moving average filtering, exponential smoothing, and H-P filtering, which is
especially popular in economics and related disciplines since its application to
business cycle theory [87]. The idea behind H-P filtering can be found in several
fields, and can be traced back at least to work in 1961 by Leser [113] in statistics.

Let’s revisit the optimisation problem in (4.13), when X is the identity matrix IN ,
and D is like second difference. Hereafter, we introduce the “sparsest” version of
the trend filter problem, i.e.,

min
β

1
2∥y− β∥2

2 + λ∥Dβ∥ℓ0 , (4.23)

where

D ≜


1 −2 −1

.

1 −2 1

 ∈ R(M−2)×M . (4.24)

For what follows, it is useful and clearer to rewrite (4.23) in the following equivalent
form:

min
β

1
2

M∑
t=1
∥y(t)− β(t)∥2

2 + λ
M−1∑
t=2
∥β(t− 1)− 2β(t) + β(t + 1)∥ℓ0 , (4.25)

where β(t) is the trend estimate; λ ≥ is the regularisation parameter used to control
the trade-off between the smoothness of β(t) and the size of residual y(t)− β(t). The
first term in the objective function measures the size of the residual; the second term
measures the smoothness of the estimated trend. The argument appearing in the
second term, β(t− 1)− 2β(t) + β(t + 1), is the second difference of the time series at
time t; it is zero when and only when the three points β(t− 1), β(t) and β(t + 1) are
on a line.In other words, the secondterm in the objective is zero if and only if β(t) is

4.5 Models with Abrupt Change 65

affine, i.e., has the form β(t) = a + bt for some constants a and b. (In other words,
the graph of β(t)) is a straight line.)

For the problem (4.25), two convex relaxation strategies can be employed. The
first one is to replace ℓ0 norm penalty with a “sum of square” norm term

min
β

1
2∥y− β∥2

2 + λ∥Dβ∥2
ℓ2 , (4.26)

This optimisation problem (4.26) is strictly convex and coercive in β, and so has a
unique minimiser. The ℓ2 relaxation is known as the Hodrick-Prescott (H-P) filter.
The H-P filter is supported in several standard software packages for statistical data
analysis, e.g., SAS, R, and Stata.

The other relaxation strategy is to replace the ℓ0 norm penalty with ℓ1 norm term

min
β

1
2∥y− β∥2

2 + λ∥Dβ∥ℓ1 , (4.27)

which is known as an ℓ1 trend filter [101]. The principal difference is that the ℓ1 trend
filter produces trend estimates that are smooth in the sense of being piecewise linear.
The ℓ1 trend filter is thus well suited to analysing time series with an underlying
piecewise linear trend. The kinks, knots, or changes in slope of the estimated trend
can be interpreted as abrupt changes or events in the underlying dynamics of the
time series; the ℓ1 trend filter can be interpreted as detecting or estimating changes
in an underlying linear trend.

4.5.2 Fault Diagnosis Problem

In the previous Sections in this Chapter, we were trying to find the abrupt change
point from static time series. The motivation for this Section is to pose the problem
when time series data are streaming in and out on line or in real time. This problem is
known as the fault diagnosis problem in the system and control context. Regarding
the recommendations of the IFAC Technical Committee SAFEPROCESS, this work
proposes a method to: 1) decide whether there is an occurrence of a fault and the
time of this occurrence (detection), 2) establish the location of the detected fault
(isolation), and 3) determine the size and time-varying behaviour of the detected
fault (identification).

Re-consider the linear regression model in (2.47)

yi = Ψivi + Ξi, i = 1, . . . , nx. (4.28)

66 Time-Varying Dynamical System

with
yi ≜ [yi(1), . . . , yi(M)]⊤ ∈ RM×1,

Ψi ≜


fi1(x(1), u(1)) . . . fiNi

(x(1), u(1))
...

fi1(x(M), u(M)) . . . fiNi
(x(M), u(M))

 ∈ RM×Ni ,

vi ≜ [vi1, . . . , viNi
]T ∈ RNi×1,

Ξi ≜ [ξi(1), . . . , ξi(M)]⊤ ∈ RM×1.

(4.29)

We will have the following problem statement for dynamic change point detec-
tion problem

Definition 2 If a system can be described by (4.28), the system is f
¯
aulty when vij changes

to a new scalar v
[f]
ij .

Based on the considerations above and Definition 2, the problem that we are inter-
ested in solving is the following:

Problem 10 Having access to the measurements and the distribution of the noise, how
can we detect the occurrence and magnitude of a fault, namely, how can we estimate the
magnitude of the errors vij − w

[f]
ij , ∀i, j, using the smallest possible number of samples.

Chapter 5

Technical Issues Related to Dynamical
System Identification

68 Technical Issues Related to Dynamical System Identification

In this Chapter, we discuss some technical issues related to dynamical systems,
model structure selections, and data preprocessing in practice.

5.1 Uniquesness of Solutions in Chapter 2

First, we introduce a very important concept in SYSID, namely, identifiability. As
pointed out in [117], identifiability is a concept that is central in SYSID problem.
Loosely speaking, the problem is whether the identification procedure will yield
a unique value of the parameter θ, and/or whether the resulting model is equal
to the true system. This issue, regrettably to say, is beyond the scope of the thesis.
The issue involves aspects on whether the data set (the experimental conditions) is
informative enough to distinguish between different models as well as properties of
the model structure itself: If the data are informative enough to distinguish between
nonequal models, then the question is whether different values of θ can give equal
models. With the terminology mentioned in Figure 1.1, the latter problem concerns
the invertibility of the model structureM (i.e., whetherM is injective). The definition
of global identifiability is

Definition 3 A model structureM is globally identifiable at θ∗ if

M(θ) =M(θ)∗, θ ∈ DM ⇒ θ = θ∗. (5.1)

Thus the identification condition for general nonlinear system is hardly given. It
will be dangerous to assume the system under identification is identifiable a prior.
But under the Assumption 5, we can have another way to approach identifiability
condition. If the system under consideration is identifiable, we cannot get a sparser
solution than the true one, as this would contradict the identifiability assumption,
i.e., more than one model can equivalently explain the data. In order to search for
the sparsest solution β, we impose a penalty on the ℓ0 norm of β, ∥β∥0, i.e. on the
number of nonzero elements in β. With the addition of this ℓ0 norm penalty, the
linear regression problem (9.8) can be formulated into the following regularised
regression problem, which is also known as an ℓ0-minimisation problem [31, 196, 50]:

ŵ = arg min
β
∥y−Xβ∥2

2 + λ ∥β∥ℓ0
. (5.2)

In (1.4), y is the the vector observations, X is a known regressor matrix, β is the
vector of unknown coefficients and λ is a tradeoff parameter. Subsequently, one may

5.1 Uniquesness of Solutions in Chapter 2 69

wonder what the gap between the solution to this ℓ0-minimisation problem and the
true solution is.

To characterise this gap, we shall firstly introduce the following definition.

Definition 4 [Definition 1 of [51]] The spark of a given matrix A is the smallest number of
columns of A that are linearly dependent.

Proposition 1 [Corollary 1 of [51]] In the noiseless case where η = 0 for any vector
y ∈ RM , there exists one unique signal β, such that y = Xβ with ∥w∥0 = S if and only if
Spark(X) > 2S.

Remark 10 It is easy to see that Spark(X) ∈ [2, M + 1]. Therefore, in order to get the
unique S-sparse solution β to y = Xβ, Proposition 1 imposes that M ≥ 2S.

Corollary 1 If the number of samples M is greater or equal to 2 times the number of nonzero
elements S in the “true” value of w, then the ℓ0-minimisation solution w to the equation
y = Xw will be consistent with the “true” value.

Proof Since the sparsest solution can be obtained through ℓ0-minimisation in (5.2), this
Corollary is straightforward from Proposition 1 and Remark 10.

Remark 11 This Corollary bridges the gap between the “true” solution and that obtained
by ℓ0-minimisation provided the assumptions of Corollary 1 hold. If these assumptions do
not hold, then prior knowledge, additional experiments and/or data points might be required.

As introduced in Chapter 1.3, the restricted isometry property (RIP) condition is a
sufficient condition for exact reconstruction based on ℓ1-minimisation. It was shown
in [31, 44, 30] that both convex ℓ1-minimisations and greedy algorithms lead to exact
reconstruction of S-sparse signals if the matrix X satisfies the RIP condition. The ℓ1

relaxation of the optimisation problem in (5.2) is

min
β
∥y−Xβ∥2

2 + λ ∥β∥ℓ1 (5.3)

Unfortunately, either RIP condition or incoherence condition is hardly satisfied
in system identification problems since the dictionary matrix is constructed from
time series data and the candidate basis functions can be selected arbitrarily in
principle. ℓ1 relaxation can hardly be expected to show high performance. Therefore,
the Bayesian approach can be potentially alleviate these issues.

70 Technical Issues Related to Dynamical System Identification

5.2 Selection of Candidate Basis Functions

It can be found that the success of modelling highly depends on the selection of
the dictionary function. However, the selection procedure is a piece of art which is
field specific and requires subtle domain knowledge. For example, sin function can
be hardly found in the description of biochemical reaction dynamics. Fortunately,
some general basis functions may exist and this setup is familiar in a number of
fields, including standard expansions in terms of orthogonal polynomials in classical
physics [1] as well as in approximation theory [165] and neural networks [85]. An
exhaustive introduction and review of the commonly used basis functions can be
found in some classic text books from different communities, e.g., system identi-
fication by Ljung [117, Chapter 5.4], statistical learning by Hastie, Tibshirani and
Friedman [79, Chapter 5], or kernels named in machine learning By Murphy [127,
Chapter 14], Bishop [22, Chapter 6].

The candidate dictionary functions φi can assume any of a variety of forms,
including polynomials, rational, exponentials, sinusoidals, or others, based on the
underlying knowledge of the system. Classical functional decomposition methods,
e.g., polynomial Volterra and Taylor expansions, orthogonal polynomials or Fourier
series [15, 117, 165], are sometimes used to approximate the functional behaviour
even if the number of dictionary functions could, in theory, be infinite. Here, we
focus on systems relevant in many modelling and experimental setups where we can
use our a priori knowledge about the system to propose an informed set of dictionary
functions based on the fundamental physical or biological laws expected to be at play.
In many physical systems, the models include particular classes of functional cou-
plings that emerge directly from the physical field interactions, e.g., laser arrays [211],
arrays of antennas [185], mechanical couplings [82], power systems [2]. In chem-
ical reaction networks only polynomial terms typically need to be considered [7],
whereas biochemical networks relevant in Systems and Synthetic Biology of the
cell, typically involves nonlinearities that capture fundamental biochemical kinetic
laws, e.g., first-order degradation functions, mass-action kinetics, Hill and Michaelis-
Menten functions, which are confined to either polynomial or rational functions [5].
In neuroscience, sparse representations for neural coding are extracted [130]. The
appropriate selection of dictionary functions is an important area of current interest
in system identification in other areas of systems engineering [117].

5.2 Selection of Candidate Basis Functions 71

Try Black Box Expansions We could construct the regressors as typical (polyno-
mial) combinations of the past inputs and outputs and see if the model is able to
describe the data. It normally gives a large number of possible regressors. It is
somewhat simpler for the Hammerstein model, where we may approximate the
static nonlinearity by a polynomial expansion:

f(u) = α1u + α2u
2 + . . . + αmum. (5.4)

Each power of u could then pass different numerator dynamics:

A(q)y(t) = B1(q)u(t) + B2(q)u2(t) + . . . + Bm(q)um(t). (5.5)

This is clearly a linear regression model structure.

Use Physical Insight A few moments reflection, using college physics, often may
reveal which are the essential nonlinearities in a system. This will suggest which
regressor to try in (2.23). We call this semi-physical modelling. It could be as simple as
taking the product of voltage and current measurements to create a power signal.

Polynomial and Rational Functions Polynomial and rational representations are
probably the most widely used, at least in this thesis, in the context of system and
synthetic biology modelling and control engineering.

If fi(·) can be represented by polynomial functions then it can be decomposed
into sums of monomial terms. A monomial md in n variables is a function defined
as md(x) ≜ xd1

1 xd2
2 . . . xdn

n for di ∈ Z+. The degree of a monomial is defined as
deg md := ∑n

i=1 di. Polynomials being decomposable into sums of monomial terms,
the elements fis(x) appearing in the dictionary function matrix Xi can be represented
as monomials of the form:

fis(x) = x
d

[is]
1

1 x
d

[is]
2

2 . . . xd
[is]
n

n . (5.6)

In this example of a system with states and inputs memories, we will show
how to construct the expanded dictionary matrix by adding candidate nonlinear
functions.

72 Technical Issues Related to Dynamical System Identification

Example 3 To illustrate how to expand Ψi to Xi, we consider the following general SISO
NARX model with polynomial terms:

x(t + 1) = w1 + w2x(k) + . . . + wmx+2x(k −mx) + wmx+3x(t)x(k − 1) + . . .

+ wNxdx(k −mx)udu(k −mu) + ξ(k)
= βT f(x(t), . . . , x(k −mx), u(t), . . . , u(k −mu)) + ξi(t),

(5.7)

where dx (resp. du) is the degree of the output (resp. input); mx (resp. mu) is the maximal
memory order of the output (resp. input); β⊤ = [w1, . . . , wN] ∈ RN is the weight vector; and
f(x(t), . . . , x(k −mx), u(t), . . . , u(k −mu)) = [f1(·), . . . , fN(·)]⊤ ∈ RN is the dictionary
functions vector. By identification of (5.7) with the NARX model (2.24), we can easily see
that dx = 5, du = 4, mx = 2, mu = 2. To define the dictionary matrix, we consider all
possible monomials up to degree dx = 5 (resp. du = 4) and up to memory order mx = 5
(resp. mu = 2) in x (resp. u). This yields f(·) ∈ R1960 and thus β ∈ R1960. Since v ∈ R4,
only 4 out of the 1960 associated weights wi are nonzero.

5.3 Dealing with Basis Function Nonlinearity

The a priori selection of a good set of dictionary functions fis(x) is key to the iden-
tification process. Some a priori knowledge of the provenance of the data and the
field for which the models are developed can be particularly helpful for this. For
example, the typical nonlinearities used to create nonlinear ODE models of gene
regulatory networks can be restricted to those known to capture fundamental bio-
chemical kinetic laws, e.g. first-order functions f(x) = αx, mass action functions
f([x1, x2]) = βx1 · x2, Michaelis-Menten functions f(x) = Vmax

K+x
, or Hill functions

f(x) = Vmax
K+xh . Using our framework, h and K are assumed to be known a priori,

whereas α, β, Vmax can be identified through the process described in the previous
sections.

Thus, to find practical solutions to the identification of the parameters embedded
nonlinearly in the dictionary functions is challenging, e.g. the parameters h and K

of the Hill functions.
A naive solution to the estimation of the Hill coefficient, h, is to introduce more

nonlinear terms in the set of dictionary functions, each with a different Hill coefficient.
Since h ∈ Z+ and very few biological systems are characterised by Hill coefficients
larger than 8, the number of such terms is typically relatively low. On the basis of
this, the set of Hill functions Vmax

K+xh with h = 1, 2, · · · , 8 is a good candidate subset to

5.4 Gaussian Assumption 73

0 2 4 6 8 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hill functions with different h

1

1+x
1

1+x2

1

1+x3

0.2684

1+x
+ 0.7292

1+x3

(a) Hill functions 1
1+xh characterised by differ-

ent Hill coefficients, h, with h = {1, 2, 3}. The
Hill function 1

1+x2 is tightly approximated by
the linear combination 0.2684

1+x + 0.7292
1+x3 .

0 2 4 6 8 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hill functions with different K

1

1+x2

1

1.5+x2

1

2+x2

0.307

1+x2 +
0.729

2+x2

(b) Hill functions 1
K+x2 characterised by differ-

ent Hill thresholds, K, with K = {1, 1.5, 2}. The
Hill function 1

1.5+x2 is tightly approximated by
the linear combination 0.307

1+x2 + 0.729
2+x2 .

Fig. 5.1 Hill functions can be approximated by linear combinations of other Hill
functions.

be included in the set of dictionary functions. Furthermore, even if the true function
is not a member of the considered set of dictionary functions, it is often the case that
the true dictionary function can be approximated by a linear combination of the other
members of the set of dictionary functions. For example, suppose the true function to
be identified is 1

1+x2 and that the set of dictionary functions is { 1
1+x

, 1
1+x3 , 1

1+x4}. The
true function 1

1+x2 can be approximated as a linear combination of the other rational
functions present in the set of dictionary functions: 1

1+x2 ≈ a · 1
1+x

+ b · 1
1+x3 + 0 · 1

1+x4 ,
where a and b are some real numbers that can be identified using our framework,
see Figure 5.1(a).

The estimation of the Hill threshold parameter K can be dealt with in a similar
manner as for the Hill coefficient h. For example, the nonlinear Hill function 1

1.5+x2

can be approximated by a linear combination of Hill functions with different values
of K: 1

1.5+x2 ≈ a
1+x2 + b

2+x2 , where a and b are some real numbers that can be identified
using our framework, see Figure 5.1(b).

5.4 Gaussian Assumption

In the linear regression models of the previous Chapters, i.e., Eq. (2.59), Eq. (3.7), and
Eq. (4.10), we assumed the stochastic term Ξ to be Gaussian i.i.d. The stochastic term
can be treated as dynamic noise in the dynamical systems’ setting. Unfortunately,

74 Technical Issues Related to Dynamical System Identification

noise is not always Gaussian in practice. However, here we will still use a Gaussian
assumption to use the Gaussian assumption for a couple of reasons.

First of all, the underlying assumption for ordinary least square (OLS) is the
Gaussian noise assumption. However, noise is called “residual” in the usual OLS
literature. The nonconvex optimisation problems in Sections 2.4.2, 3.3.2 and 4.4.2
are essentially regularised least square problems. Therefore, these formulations
should share the asymptotic convergence and consistency property regardless of the
distribution of the residual.

Secondly, if the distribution of the noise belongs to an exponential family, it
can be approximated by a series of Gaussian distributions. This is also the idea of
Laplace approximation [127]. As summarised from Michael Jordan’s lectures on
“Bayesian Modelling and Inference” at UC Berkeley, the Gaussian assumption is
naturally linked to Laplace approximation. The Laplace approximation is a general
way to approach marginalisation problems. The basic idea is to approximate an
integral of the following form:

I(t) =
∫

e−Mh(x)dx (5.8)

where M is typically the number of data points. After performing a Taylor series
expansion of both h(x) and the exponential function and evaluating some elementary
integrals, we show that the following approximation of I(t) can be derived.

I(M) = e−Nh(x̂)√2πσM−1/2
(

1− h4(x̂)σ4

8N
+ 5h2

3(x̂)σ6

24N

)
, (5.9)

where σ2 = 1/h2(x̂) and x̂ = argminx h(x). If x̂ can not be determined analytically, it
is typically approximated with some value x̃ such that the approximation error of
x̂− x̃ is within a factor ofO(1/M). For example, in a Bayesian application −h(x) can
be the likelihood times a prior and x̂ is then the maximum a posteriori probability
(MAP). As M gets large, the MAP approaches the maximum likelihood estimate
(MLE), so we can approximate x̂ with the MLE and still obtain a rigorous accuracy
bound.

The multivariate case is derived in exactly the same way s the univariate case.
The only difference being that we perform a multivariate Taylor series expansion
and get a multivariate Gaussian integral. Letting x denote a d-dimensional vector

5.5 Dealing with Measurement Noise 75

and h(x) a scalar function of x, we obtain:∫
e−Nh(x)dx ≈ e−Nh(x̂)(2π)d/2|Σ|1/2M−d/2, (5.10)

where Σ = (D2h(x̂))−1 is the inverse of the Hessian of h evaluated at x̂. This
expansion is accurate to orderO(1/N), since we only consider the firs order terms of
the Laplace approximation. However, as in Eq. (5.9) the expansion can be continued
to obtain an accuracy of order O(1/N2).

One application of the Laplace approximation is to compute the marginal likeli-
hood. Letting M be the marginal likelihood we have

M =
∫

P (X|θ)π(θ)dθ (5.11)

=
∫

exp
(
−M

(
− 1

M
log P (X|θ)− 1

M
log π(θ)

))
dθ (5.12)

where, h(θ) = − 1
M

log P (X|θ)− 1
M

log π(θ), Using the Laplace approximation up to
the first order as in Eq. (5.10) we get

M ≈ P (X| ˆ(θ))π(ˆ(θ))(2π)d/2|Σ|1/2M−d/2 (5.13)

This approximation is used for example in model selection, where computing the
marginal likelihood analytically can be hard unless there is conjugacy. Computing
the Laplace approximation requires finding the maximum a posteriori probability
θ̂ = argmaxθ−h(x), which can be done using a standard method such as gradient
search. It also requires computing the second derivative matrix and inverting it to
obtainΣ. This is usually the harder quantity to calculate.

5.5 Dealing with Measurement Noise

The model class considered in (2.49) can be enlarged in various ways. First, measure-
ment noise, which is ubiquitous in practice, can be accounted for using the following
linear measurement equation:

zt = xt + ϵt, (5.14)

where the measurement noise ϵt is assumed i.i.d. Gaussian. Under this formulation,
the noise-contaminated data zt represents the collected data rather than xt. Second,
the additive stochastic term ξt is often used to model dynamic noise or diffusion.
In many practical application, however, it is necessary to account for multiplica-

76 Technical Issues Related to Dynamical System Identification

tive noise instead of additive noise. Multiplicative noise can be accounted for by
replacing the system equation with

ẋt = f(xt, ut)v + h(xt, ut)ξt.

We show how the framework presented here can be modified to encompass these
extensions. Without loss of generality and to ease notation, we consider the scalar
case. In the scalar case, the system equation is written:

ẋ(t) = g(x(t)) + ηx(t), (5.15)

while the measurement equation is given as:

y(t) = x(t) + ϵ(t), (5.16)

where ϵ(t) is the measurement noise which is assumed to be Gaussian i.i.d. We can
simply use Taylor series expansion to expand g(x(t)) from y(t):

g(x(t)) = g(y(t)− ϵ(t))
=g(y(t))− g′(x(t))|x(t)=y(t)ϵ(t) +O(ϵ2(t))︸ ︷︷ ︸

Correlated Gaussian noise

=g(y(t)) + ηy(t).

(5.17)

Therefore, if we can estimate ẋ from y properly, we can write the following

ẋestimate(t) = g(y(t)) + ηx(t) + ηy(t)︸ ︷︷ ︸
new noise

= g(y(t)) + η(t).
(5.18)

Clearly, η(t) is not independent and identically distributed anymore.

In stochastic differential equations used to describe biochemical reactions or in
Langevin equations, the diffusion term is typically described as a multiplicative
noise, e.g. ηx(t) in (5.15) can be expressed as ηx(t) = h(x(t))ϵ(t) where h(x(t)) is
unknown bounded nonlinear function and ϵ(t) is Gaussian i.i.d. If the form of
h(x(t)) is not of particular interest, ηx(t) can be absorbed by η(t) in (5.18).

5.6 Estimation of the Derivative 77

5.6 Estimation of the Derivative

Estimating time derivatives from noisy data in continuous-time systems can either
be achieved using a measurement equipment with a sufficiently high sampling rate,
or by using state-of-the-art mathematical approaches [48]. Estimation of derivatives
is key to the identification procedure [48]. As pointed out in [145], the identifi-
cation problem is generally solved through discretisation of the proposed model.
Assuming that samples are taken at sufficiently short time intervals, various discreti-
sation methods can be applied. Typically, a forward Euler discretisation is used to
approximate first derivatives, i.e., yi can be defined as

yi ≜
[

xi(t2)− xi(t1)
t2 − t1

, . . . ,
xi(tM+1)− xi(tM)

tM+1 − tM

]⊤

∈ RM×1.

In this thesis, the local polynomial regression framework in [48] is applied to estimate
ẋ(t). Forward Euler discretisation and central difference discretisation are special
cases of the local polynomial regression framework.

Proposition 2 (Proposition 1 in [48]) Consider the bivariate data (t1, Y1), . . . , (tM , YM).
Assume data are equispace-sampled and let

∑k
j=1 wj = 1. For k +1 ≤ i ≤ n−k, the weights

wj are chosen as:

wj = 6j2

k(k + 1)(k + 2) , j = 1, . . . , k.

Based on these weights, the first derivative can be approximated as:

Y
′

i =
k∑

j=1
wj ·

(
Yi+j − Yi−j

ti+j − ti−j

)
.

Part II

Algorithms

Chapter 6

Algorithms for Likelihood in
Gaussian

82 Algorithms for Likelihood in Gaussian

We first revisit the nonlinear system identification problems defined in Chapters
2, 3 and 4 respectively.

Chapter 2: Linear/Nonlinear Time-Invariant Systems Revisit the nonconvex op-
timisation problem (2.61) and its convex relaxation in (2.62):

Nonconvex Problem: min
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ0 ,

Convex Relaxation: min
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ1 .

Chapter 3: Nonlinear Dynamical System with Heterogeneous Datasets Revisit
the nonconvex optimisation problem (3.9) and its convex relaxation in (3.11):

Nonconvex Problem: min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥∥βn∥ℓ2∥ℓ0 ,

Convex Relaxation: min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥βn∥ℓ2 .

Chapter 4: Time-Varying Dynamical System Revisit the nonconvex optimisation
problem (4.13) and its convex relaxation in (4.17):

Nonconvex Problem: min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥Dnβn∥ℓ0 ,

Convex Relaxation: min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥Dnβn∥ℓ1 .

Then for the complicated case, revisit the nonconvex optimisation problem (4.16)
and its convex relaxation in (4.22):

Nonconvex Problem: min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ0 + λ2

N∑
n=1
∥∥βn∥ℓ2∥ℓ0 ,

Convex Relaxation: min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ1 + λ2

N∑
n=1
∥βn∥ℓ2 .

From the above problem formulations, it is found that these minimisation prob-
lems belonged to a penalised/regularised maximum a posteriori estimation form:
data fitting term 1

2∥y−Xβ∥2
2 plus some spare penalties/regularisations term. The

underlying assumption behind the quadratic form of the data fitting term is that the

6.1 Gaussian Likelihood 83

data likelihood is Gaussian distributed. In this Chapter, we will propose a general
framework to address these above problems where data likelihood is Gaussian
distributed. The structure of this Chapter is organised as follows. In Section 6.1, we
revisit shortly about the data likelihood with Gaussian distribution. In Section 6.2,
the sparse prior will be introduced as a controller for the structural sparsity. Next in
Section 6.3, the optimisation problem from a Bayesian perspective will be defined.
Subsequently in Section 6.4, some principles for solving the optimisation problem are
discussed. Then in Section 6.5, the general optimisation algorithms are proposed. In
the last three Sections, i.e., 6.6, 6.7 and 6.8, optimisation algorithms will be proposed
for Chapters 2, 3 and 4 respectively.

6.1 Gaussian Likelihood

To get an estimate of β, we use Bayesian modelling to treat all unknowns as stochastic
variables with certain probability distributions. For

y = Xβ + Ξ,

it is assumed that the stochastic variables in the vector Ξ are Gaussian distributed
with

Ξ ∼ N (0, Π).

In what follows we consider the following variable substitution for the inverse of
covariance matrix or precision matrix:

Π−1 ≜ Θ.

In such case, the likelihood of the data given β is

p(y|β) = N (y|Xβ, Π)

= 1
(2π)M/2 |Π|1/2

exp
[
−1

2 (y−Xβ)⊤ Π−1 (y−Xβ)
]

= 1
(2π)M/2 |Θ|−1/2

exp
[
−1

2 (y−Xβ)⊤ Θ (y−Xβ)
]

.

(6.1)

For simplicity, we typically define

Π ≜ σ2I,

84 Algorithms for Likelihood in Gaussian

we have
p(y|β) = N (y|Xβ, Π)

= 1
(2π)M/2 σN

exp
[
− 1

2σ
(y−Xβ)⊤ Θ (y−Xβ)

] (6.2)

with β ∈ RN .

6.2 Sparse Prior

Based on [134], we apply the convex representation criteria for variational representa-
tions of non-Gaussian latent variables. In [134], it is showed the general equivalence
between the convex variational representation and the integral type scale mixture
representation. Moreover, they show general equivalence between the variational
convex approximate maximum a posterior estimate of hyperparameters and the
ensemble learning or variational Bayesian method.

We define a prior distribution p(β) as

p(β) ∝ exp
[
−1

2
∑

i

g(βi)
]

=
N∏

i=1
exp

[
−1

2g(βi)
]

=
N∏

i=1
p(βi), (6.3)

where g(βi) is a given function of βi. To enforce sparsity on β, the function g(·)
is usually chosen as a concave, non-decreasing function of |βi|. Examples of such
functions g(·) include Generalised Gaussian priors and Student’s t priors (see [134]
for details).

Computing the posterior mean E(β|y) is typically intractable because the poste-
rior p(β|y) is highly coupled and non-Gaussian. To alleviate this problem, ideally
one would like to approximate p(β|y) as a Gaussian distribution for which efficient
algorithms to compute the posterior exist [22]. Another approach consists in con-
sidering super-Gaussian priors, which yield a lower bound for the priors p(βi) [134].
The sparsity inducing priors mentioned above are super-Gaussian. More specifically,
if we define γ ≜ [γ1, . . . , γN]⊤ ∈ RN

+ , we can represent the priors in the following
relaxed (variational) form:

p(β) =
N∏

i=1
p(βi),

p(βi) = max
γi>0
N (βi|0, γi)φ(γi),

(6.4)

6.2 Sparse Prior 85

where φ(γi) is a nonnegative function which is treated as a hyperprior with γi being
its associated hyperparameters. Throughout, we call φ(γi) the “potential function”.
This Gaussian relaxation is possible if and only if log p(

√
βi) is concave on (0,∞).

The following proposition provides a justification for the above:

Proposition 3 [134] A probability density p(βi) ≡ exp(−g(βi
2)) can be represented in the

convex variational form: p(βi) = maxγi>0N (βi|0, γi)φ(γi) if and only if − log p(
√

βi) =
g(βi) is concave on (0,∞). In this case the potential function takes the following expression:
φ(γi) =

√
2π/γi exp (g∗ (γi/2)) where g∗(·) is the concave conjugate of g(·). A symmetric

probability density p(βi) is said to be super-Gaussian if p(
√

βi) is log-convex on (0,∞).

Remark 12 For the Laplace prior p(βi) ∝ exp(−λ
∑

j |wi|), one can have a Laplace
potential function φ(γi) = exp

(
−1

2 |γi|
)√

2π|γi|. For the Student’s t prior p(βi) ∝ (b +
βi

2

2)−(a+ 1
2), one can have a Student’s t potential function φ(γ) = 1, when a, b→ 0.

For a fixed γ = [γ1, . . . , γN], we define a relaxed prior which is a joint probability
distribution over β and γ as

p(β; γ) =
N∏

i=1
N (βi|0, γi)φ(γi) = p(β|γ)p(γ) ≤ p(β) (6.5)

where

p(β|γ) ≜
N∏

i=1
N (βi|0, γi), p(γ) ≜

N∏
i=1

φ(γi). (6.6)

Now, we make a slight modification on the prior by introducing a linear transfor-
mation, i.e., Bβ. With B ∈ Rℵ×N , we can define

p(Bβ) =
ℵ∏

i=1
p(Bi,:β) ∝

ℵ∏
i=1

exp
[
−1

2g(Bi,:β)
]

(6.7)

with g(Bi,:β) being a given function of Bi,:β. Generally, Bβ in (6.7) is sparse, and
therefore certain sparsity properties should be enforced on β. To this effect, the
function g(·) is usually chosen to be a concave, non-decreasing function of |Bi,:β|
[214]. Similarly, we introduce super-Gaussian priors p(Bi,:β), i.e.,

p(Bi,:β) = max
γi>0
N (Bi,:β|0, γi)φ(γi), (6.8)

86 Algorithms for Likelihood in Gaussian

or in the equivalent compact form

p(Bβ) = max
γi>0

ℵ∏
i=1
N (Bi,:β|0, γi)φ(γi)

= max
γ≻0
N (Bβ|0, Γ)φ(γ)

(6.9)

where
γ = [γ1, . . . , γℵ] ∈ Rℵ, Γ = diag [γ] . (6.10)

6.3 Optimisation Problem Definition

Once we introduce the Gaussian likelihood in (6.1) and the variational prior in (6.9),
the target is to maximise the marginal likelihood as

∫
N (y|Xβ, Π)N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ. (6.11)

We can get the following optimisation problem jointly on β, γ and Π.

It is a bit abrupt to introduce the target and Proposition 4 below. Too many
motivations are missing here, for example, why marginal likelihood maximisation
is our target, why B is introduced, etc. In the subsequent Sections of this Chapter,
these issues will be addressed. Many results are direct consequence of the following
Proposition which will be directly referred.

Proposition 4 The unknowns β, γ, Π can be obtained by solving the following optimisation
problem

min
β,γ,Π

L(β, γ, Π) (6.12)

where

L(β, γ, Π) = (y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ

+ log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X| −
ℵ∑

i=1
log φ(γi). (6.13)

6.3 Optimisation Problem Definition 87

Proof To derive the cost function in (6.13), we first introduce the posterior mean and
variance

mβ = ΣβX⊤Π−1y, (6.14a)

Σβ = (X⊤Π−1X + B⊤Γ−1B)−1. (6.14b)

Since the data likelihood p(y|β) is Gaussian, i.e.,

N (y|Xβ, Π) = 1
(2π)M/2 |Π|1/2

exp
[
−1

2 (y−Xβ)⊤ Π−1 (y−Xβ)
]

, (6.15)

we can write the marginal likelihood as

∫
N (y|Xβ, Π)N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ

= 1
(2π)M/2 |Π|1/2

1
(2π)ℵ

∫
exp{−E(β)}dβ

ℵ∏
i=1

φ(γi),
(6.16)

where
E(β) = 1

2 (y−Xβ)⊤ Π−1 (y−Xβ) + 1
2β⊤B⊤Γ−1Bβ. (6.17)

Equivalently, we get

E(β) = 1
2(β −mβ)⊤Σ−1

β (β −mβ) + E(y) (6.18)

where mβ and Σβ are given above.

We first show the data-dependent term is convex in β and γ. From (6.14a) and (6.14b),
the data-dependent term can be re-expressed as1

E(y) =1
2
(
y⊤Π−1y− y⊤Π−1XΣβX⊤Π−1y

)
=1

2
(
y⊤Π−1y− y⊤Π−1XΣβΣ−1

β ΣβX⊤Π−1y
)

=1
2 (y−Xmβ)⊤ Π−1 (y−Xmβ) + 1

2m⊤
β Γ−1mβ

= min
β

[1
2 (y−Xβ)⊤ Π−1 (y−Xβ) + 1

2β⊤B⊤Γ−1Bβ
]

.

(6.19)

1Woodbury inversion lemma does not apply here since B⊤Γ−1B in Π may be not invertible.

88 Algorithms for Likelihood in Gaussian

Using (6.18), we can evaluate the integral in (6.16)) to obtain

∫
exp{−E(β)}dβ = exp{−E(y)}(2π)ℵ|Σβ|1/2. (6.20)

Applying a −2 log(·) transformation to (6.16), we have

L̂(β, γ, Π) = −2 log
[

1
(2π)M/2 |Π|1/2

1
(2π)ℵ

∫
exp{−E(β)}dβ

ℵ∏
i=1

φ(γi)
]

= y⊤
[
Π−1 −Π−1X(X⊤Π−1X + B⊤Γ−1B)−1X⊤Π−1

]
y

+ log |Π|+ log |Γ|+ log |X⊤Π−1X + B⊤Γ−1B|

−
∑ℵ

i=1 log φ(γi) + (M + 2ℵ) log 2π

= min
β

[
(y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ

]
+ log |Π|+ log |Γ|+ log |X⊤Π−1X + B⊤Γ−1B|

−
∑ℵ

i=1 log φ(γi) + (M + 2ℵ) log 2π.

(6.21)

Therefore we get the following cost function to be minimised in (6.13) over β, γ, Π

L(β, γ, Π) = (y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ

+ log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X| −
ℵ∑

i=1
log φ(γi).

Then we have
min
β,Π,Γ

L(β, γ, Π) = min
β,Π,Γ

L̂(β, γ, Π). (6.22)

It should be notice that the explicit form of φ(γi) is typically not available, thus it is usually
chosen as non-informative as φ(γi) = 1 which is a consequence of specifying Student’s t
prior. Then we have

L(β, γ, Π) = (y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ

+ log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X|. (6.23)

■

Next, we the show that the stated program can be formulated as a convex-concave
procedure (CCCP).

6.3 Optimisation Problem Definition 89

Proposition 5 The following programme

min
β,Π,Γ

(y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ

+ log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X|. (6.24)

can be formulated as a convex-concave procedure (CCCP).

Proof Fact on convexity: the function

u(β, Π, Γ) = (y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤Γ−1Bβ (6.25)

is convex jointly in β, Π, Γ due to the fact that f(β, Y) = β⊤Y −1β is jointly convex in β,
Y (see, [28, p.76]). Hence u as a sum of convex functions is convex.

Fact on concavity: the function

v(Π, Γ) = log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X| (6.26)

is jointly concave in Γ, Π. We exploit the properties of the determinant of a matrix

|A22||A11 − A12A
−1
22 A21| =

∣∣∣∣∣∣
A11 A12

A21 A22

∣∣∣∣∣∣ = |A11||A22 − A21A
−1
11 A12|.

Then we have

v(Π, Γ) = log |Π|+ log |Γ|+ log |B⊤Γ−1B + X⊤Π−1X|

= log |Γ|+ log

∣∣∣∣∣∣
Γ 0

0 Π

∣∣∣∣∣∣+ log

∣∣∣∣∣∣∣
(
B⊤ X⊤

)Γ 0
0 Π

−1B
X


∣∣∣∣∣∣∣

= log |Γ|+ log


∣∣∣∣∣∣
Γ 0

0 Π

∣∣∣∣∣∣
∣∣∣∣∣∣∣
(
B⊤ X⊤

)Γ 0
0 Π

−1B
X


∣∣∣∣∣∣∣


= log |Γ|+ log
∣∣∣∣∣∣
Γ 0

0 Π

+
B

X

Γ
(
B⊤ X⊤

)∣∣∣∣∣∣


= log
∣∣∣∣∣∣
Γ 0

0 Π

+
B

X

Γ
(
B⊤ X⊤

)∣∣∣∣∣∣
 ,

(6.27)

which is a log-determinant of an affine function of semidefinite matrices Π, Γ and hence
concave. ■

90 Algorithms for Likelihood in Gaussian

Remark 13 It can be found that in (6.24) of Proposition 5, we drop the term−2∑ℵ
i=1 log φ(γi)

from (6.13) in Proposition 4. From Proposition 3, φ(γi) can be expressed as φ(γi) =√
2π/γi exp (g∗ (γi/2)) . Therefore

−2
ℵ∑

i=1
log φ(γi) =

ℵ∑
i=1

(− log 2π + log γi − 2g∗ (γi/2)) ∝ log |Γ| − 2
ℵ∑

i=1
g∗ (γi/2)

Then we can write L(β, γ, θ) in (7.16) as

L̂(β, γ, θ) = û (β, Γ) + v̂(Γ) (6.28)

where

û (β, Γ) = u (β, Γ)− 2
ℵ∑

i=1
g∗ (γi/2)

v̂(Γ) = v(Γ) + log |Γ|
(6.29)

Since g∗ (γi/2) is the concave conjugate of g(·), −2∑ℵ
i=1 g∗ (γi/2) is convex in γi [28,

pp.91]. Also, nonnegative weighted sums of convex functions preserve convexity [28, pp.79].
Therefore, û (β, Γ) is convex in γ as well. Similarly, since log |Γ| is concave in γ, v̂(Γ) is
concave in γ.

Like we mentioned in Remark 12, for the Laplace prior p(βi) ∝ exp(−λ
∑

j |wi|) where
one possible Laplace potential function φ(γi) = exp

(
−1

2 |γi|
)√

2π|γi|. Therefore,

û (β, Γ) = u (β, Γ) +
ℵ∑

i=1
|γi|,

v̂(Γ) = v(Γ) + log |Γ|.
(6.30)

However, for the Student’s t prior p(βi) ∝ (b + βi
2

2)−(a+ 1
2), one can have a Student’s t

potential function φ(γ) = 1, when a, b→ 0. We have

û (β, Γ) = u (β, Γ) , v̂(Γ) = v(Γ).

6.4 Optimisation Principle

Given Proposition 5, we can derive the iterative algorithm solving the CCCP. We
have the following iterative convex optimisation program by calculating the gradient

6.4 Optimisation Principle 91

of concave part.

βk+1 = argmin
β

u(β, γk, Π), (6.31)

γk+1 = argmin
γ⪰0

u(βk, γ, Π) +∇γv(γk, Π)⊤γ, (6.32)

Suppose β∗ and γ∗ are the estimate to β and γ while certain convergence criteria is
met or k reaches to the pre-defined maximum number, Π will then be estimated.

Π∗ = argmin
Π⪰0

u(β∗, γ∗, Π) + v(γ∗, Π). (6.33)

Inspired by implementation of Generalised Method of Moment (GMM) [76, 77],
a work winning Nobel Prize in Economics by Lars Hansen, we propose two ways to
optimise for θ.

The first one is inspired by two-step feasible GMM, where after the find estima-
tion of β and γ, i.e., at the iteration k = kend of the CCCP (6.31) and (6.32)

βk+1 = argmin
β

u(β, γk, Π),

γk+1 = argmin
γ⪰0

u(βk, γ, Π) +∇γv(γk, Π)⊤γ,

we have
Π∗ = argmin

Π⪰0
u(β∗, γ∗, Π) + v(γ∗, Π) (6.34)

The second on is inspired by iterated GMM, where at each iteration k of the
CCCP (6.31) and (6.32), we perform

βk+1 = argmin
β

u(β, γk, Π),

γk+1 = argmin
γ⪰0

u(βk, γ, Π) +∇γv(γk, Π)⊤γ,

Πk+1 = argmin
Π⪰0

u(βk+1, γk+1, Π) + v(γk+1, Π).

(6.35)

Remark 14 Revisit Proposition 4. At first instance, we may argue if it is necessary to
come up with Proposition 5 and subsequent alternative optimisation using CCCP. One can
actually optimise for β, γ, Π simultaneously. For example using Monte-Carlo methods, if
computation resource allowed, this method will most likely demonstrate a better performance
than the traditional iterative optimisation method.

92 Algorithms for Likelihood in Gaussian

6.5 Optimisation Algorithm

6.5.1 Iterative Reweighted ℓ1 Algorithm

First, we fix/give the known inverse covariance matrix Π−1 = Θ = Θ∗. Using basic
principles in convex analysis, we then obtain the following analytic form for the
negative gradient of v(γ) at γ is (using chain rule):

αk ≜∇γv(γ, Π)⊤|γ=γk

=∇γ

(
− log |Θ∗|+ log |Γ|+ log |B⊤Γ−1B + X⊤Θ∗X|

)⊤
|γ=γk

=− diag{(Γk)−1} ◦ diag{B(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤} ◦ diag{(Γk)−1}
+ diag{(Γk)−1},

=
[

αk
1 · · · αk

N

]
.

(6.36)
where ◦ denote the Hadamard product operation (entrywise multiplication) and
diag denote the operation to get diagonal elements of matrix. Then equivalently, we
have

αk
i = −

Bi,:(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤
i,:

(γk
i)2 + 1

γk
i

. (6.37)

Therefore, the iterative procedures (6.31) and (6.32) for βk+1 and γk+1 can be
formulated as

[
βk+1, γk+1

]
= argmin

γ⪰0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) +

ℵ∑
i=1

(
β⊤B⊤

i,:Bi,:β

γi

+ αk
i γi

)
. (6.38)

Or in the compact form

[
βk+1, γk+1

]
= argmin

γ⪰0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) + β⊤B⊤Γ−1B +

ℵ∑
i=1

αk
i γi. (6.39)

Since
β⊤B⊤

i,:Bi,:β

γi

+ αk
i γi ≥ 2

∣∣∣∣√αk
i ·Bi,:β

∣∣∣∣ ,
the optimal γ can be obtained as:

γi = |Bi,:β|√
αk

i

, ∀i. (6.40)

6.5 Optimisation Algorithm 93

From (6.36), it is found that αk
i is a function of γk

i . Therefore we need to estimate
βk+1 first to calculate γk+1. If we define

wk
i ≜

√
αk

i =

√√√√−Bi,:(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤
i,:

(γk
i)2 + 1

γk
i

, (6.41)

βk+1 can be obtained as follows

βk+1 = argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ) +
ℵ∑

i=1
∥wk

i ·Bi,:β∥ℓ1 . (6.42)

We can then inject this into (6.40), which yields

γk+1
i = |Bi,:β

k+1|
wk

i

,∀i. (6.43)

As we found in the expression for αi in (6.37), αk
i is function of γk, therefore γk+1 is

function of γk and βk+1. We notice that the update for βk+1 is to use ℓ1-regularised
regression type optimisation. The pseudo code is summarised in Algorithm 1.

Algorithm 1 Reweighted ℓ1 type algorithm for Gaussian likelihood

1: Initialise the unknown w as a unit vector;
2: Fix/given the known inverse covariance matrix Π−1 = Θ = Θ∗;
3: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
4: for k = 1, . . . , kmax do
5:

βk+1 = argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ) + λ
ℵ∑

i=1
∥wk

i ·Bi,:β∥ℓ1 ; (6.44)

6: γk+1
i =

∣∣∣∣Bi,:βk+1

wk
i

∣∣∣∣;
7: Ck+1 =

(
B⊤(Γk+1)−1B + X⊤Θ∗X

)−1
;

8: αi
k+1 = −Bi,:Ck+1B⊤

i,:
(γk+1

i)2 + 1
γk+1

i

;

9: wi
k+1 =

√
αi

k+1;
10: if a stopping criterion is satisfied then
11: Break.
12: end if
13: end for

94 Algorithms for Likelihood in Gaussian

Remark 15 The above derivation is essentially to employ Student-t distribution. Now we
consider the Laplace distribution to see the difference. As in (6.30)

û (β, Γ) = u (β, Γ) +
ℵ∑

i=1
|γi|,

v̂(Γ) = v(Γ) + log |Γ|.

We derive a new αk

αk ≜∇γ v̂(γ, Π)⊤|γ=γk

=∇γ

(
− log |Θ∗|+ 2 log |Γ|+ log |B⊤Γ−1B + X⊤Θ∗X|

)⊤
|γ=γk

=− diag{(Γk)−1} ◦ diag{B(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤} ◦ diag{(Γk)−1}
+ 2 · diag{(Γk)−1},

=
[

αk
1 · · · αk

N

]
.

(6.45)
Then joint optimisation problem (6.39) can be reformulated as

[
βk+1, γk+1

]
= argmin

γ⪰0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) + β⊤B⊤Γ−1B +

ℵ∑
i=1
|γi|+

ℵ∑
i=1

αk
i γi.

Since γ ⪰ 0, we remove | · | of |γi| and get

[
βk+1, γk+1

]
= argmin

γ⪰0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) + β⊤B⊤Γ−1B +

ℵ∑
i=1

(αk
i + 1)γi.

Then wk
i in (6.41) becomes

wk
i =

√
αk

i + 1.

It can be found that Laplace prior regularised more than Student’s-t prior by adding more
weight.

6.5.2 Iterative Reweighted ℓ2 Algorithm

Again, we first fix/give the known inverse covariance matrix Π−1 = Θ = Θ∗.
In (6.38), instead of formulating a convex program for β and γ jointly, they are

6.5 Optimisation Algorithm 95

optimised respectively:

βk+1 = argmin
β

(y−Xβ)⊤ Π−1 (y−Xβ) +
ℵ∑

i=1

∥∥∥∥∥∥Bi,:β√
γk

i

∥∥∥∥∥∥
2

ℓ2

= argmin
β

(y−Xβ)⊤ Π−1 (y−Xβ) + β⊤B⊤(Γk)−1Bβ, (6.46)

γk+1
i = argmin

γi≥0

(βk+1)⊤B⊤
i,:Bi,:β

k+1

γi

+ αk
i γi,∀i. (6.47)

Once βk+1 is obtained, γk+1 has a closed form solution to (6.47), i.e.,

γk+1
i =

√√√√(βk+1)⊤B⊤
i,:Bi,:βk+1

αk
i

,

where αk
i is the same as (6.37)

αk
i = −

Bi,:(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤
i,:

(γk
i)2 + 1

γk
i

.

But unlike (6.41), define

wk
i ≜ 1√

γk
i

.

The pseudo code is summarised in Algorithm 2.

Remark 16 Similar to Remark 15 for Laplace prior, in ℓ2 regularised algorithm, we can
only change (6.47) as

γk+1
i = argmin

γi≥0

(βk+1)⊤B⊤
i,:Bi,:β

k+1

γi

+ (αk
i + 1)γi,∀i.

for Laplace prior.

6.5.3 Inverse Covariance Matrix Estimation

Remind the statement in Proposition 4. Once unknowns β and γ are obtained as β∗

and γ∗, we can proceed with the optimisation for the covariance matrix Π

min
Π
L(β∗, γ∗, Π) (6.49)

96 Algorithms for Likelihood in Gaussian

Algorithm 2 Reweighted ℓ2 type algorithm for Gaussian likelihood

1: Initialise the unknown hyperparameter γ as a unit vector;
2: Fix/given the known inverse covariance matrix Π−1 = Θ = Θ∗;
3: Initialise w1

i = 1, ∀i;
4: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
5: for k = 1, . . . , kmax do
6:

βk+1 = argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ) + λβ⊤B⊤(Γk)−1Bβ

= argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ) + λ
ℵ∑

i=1
∥wk

i ·Bi,:β∥2
ℓ2 ;

(6.48)

7: Ck =
(
B⊤(Γk)−1B + X⊤Θ∗X

)−1
;

8: αk+1
i = −Bi,:CkB⊤

i,:
(γk

i)2 + 1
γk

i
;

9: γk+1
i = |Bi,:βk+1|√

αk+1
i

;

10: wk+1
i = 1√

γk+1
i

;

11: if a stopping criterion is satisfied then
12: Break.
13: end if
14: end for

where

L(β∗, γ∗, Π) = (y−Xβ∗)⊤ Π−1 (y−Xβ∗) + (β∗)⊤B⊤(Γ∗)−1Bβ∗

+ log |Π|+ log |Γ∗|+ log |B⊤(Γ∗)−1B + X⊤Π−1X| −
ℵ∑

i=1
log φ(γ∗

i). (6.50)

Since
Θ = Π−1,

we can re-write the optimisation problem with a new cost function over Θ and
remove the constant terms in (6.50)

min
Θ
L(β∗, γ∗, Θ) (6.51)

6.5 Optimisation Algorithm 97

where

L(β∗, γ∗, Θ) = (y−Xβ∗)⊤ Θ (y−Xβ∗)
− log |Θ|+ log |B⊤(Γ∗)−1B + X⊤ΘX|. (6.52)

By letting
Y∗ = (y−Xβ∗) · (y−Xβ∗)⊤,

we can further re-write (6.52) as

L(Θ) = Tr (ΘY∗)− log |Θ|+ log |B⊤(Γ∗)−1B + X⊤ΘX|. (6.53)

We find that Tr (ΘY∗) − log |Θ| is convex over the semidefinite matrix Θ and
log |B⊤(Γ∗)−1B + X⊤ΘX| is concave over the semidefinite matrices Θ. As the CCCP
procedure over β and γ, we can also design an iterative CCCP over Θ. At the k-th
iteration, we get the gradient of log |B⊤(Γ∗)−1B + X⊤ΘX| as Λk

Λk = ∇Θ
(
log det

(
B⊤Γ−kB + X⊤ΘkX

))
= X(B⊤Γ−kB + X⊤ΘkX)−1X⊤.

(6.54)

Then we have the following iterative algorithm to estimate the inverse covariance
matrix

Θk+1 = argmin
Θ⪰0

Tr
(
ΘYk

)
− log |Θ|+ Tr

(
ΛkΘ

)
. (6.55)

6.5.4 Volatility Estimation

In this Section, we discuss the estimation of the parameters associated with the
“noise” term. Two classic model class will be considered, i.e., autoregressive mov-
ing average with exogenous input (ARMAX) and autoregressive conditional het-
eroskedasticity (ARCH).

Discussion on ARMAX Model

Recall the ARMAX model structure defined in (2.15), i.e.,

y(t) + a1y(t− 1) + . . . + anay(t− na)
=b1u(t− 1) + . . . + bnb

u(t− nb) + e(t) + c1e(t− 1) + . . . + cnee(t− nc).

98 Algorithms for Likelihood in Gaussian

Once β is estimated as âi and b̂j , where i = 1, . . . , na, j = 1, . . . , nb, one can define
the quantity

ŷ(t) ≜ y(t) + â1y(t− 1) + . . . + ânay(t− na)− b̂1u(t− 1)− . . .− b̂nb
u(t− nb)

and have
ŷ(t) = e(t) + c1e(t− 1) + . . . + cnee(t− nc). (6.56)

Obviously, (6.56) is a moving average process. Suppose c = [c1, . . . , cne], the exact
likelihood function is given by

f(ŷ, c) = (2π)−T/2|Π|−1/2 exp
[
−1

2 ŷ⊤Π−1ŷ
]

(6.57)

where as before ŷ = [ŷ(1), . . . , ŷ(T)]. Here Π represents the variance-covariance
matrix of T consecutive draws from an moving average process

Π = C⊤C

where

C =


1 c1 c2 · · · cne 0 · · · 0 0 · · · 0
0 1 c1 · · · cne−1 cne · · · 0 0 · · · 0
... 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 1 c1 · · · cne


∈ RT ×(T +ne)

(6.58)

This is the same as eq.(5.5.6) in [73, pp. 130]. The row i, column j element of Π is
given by γ|i−j|, where γk is the kth autocovariance of an moving average process, i.e.,
MA(q) process:

γk =

σ2(ck + ck+1c1 + ck+2c2 + · · ·+ cqcq−k) for k = 0, 1, . . . , q

0 for k > q,

where c0 = 1.

This is consistent with the the optimisation program in (6.55) but without the
regularisation term Tr

(
ΛkΘ

)
, which is Maximum Likelihood Estimation

Θk+1 = argmin
Θ⪰0

Tr
(
ΘYk

)
− log |Θ|. (6.59)

6.5 Optimisation Algorithm 99

Discussion on ARCH Model

To model a time series using an ARCH process, let ϵt denote the error terms (return
residuals, with respect to a mean process), i.e. the series terms. These ϵt are split
into a stochastic piece zt and a time-dependent standard deviation σt characterizing
the typical size of the terms so that

ϵt = σtzt

The random variable zt is a strong white noise process. The series σ2
t is modelled by

σ2
t = α0 + α1ϵ

2
t−1 + · · ·+ αqϵ

2
t−q = α0 +

q∑
i=1

αiϵ
2
t−i

where α0 > 0 and αi ≥ 0, i > 0.
An ARCH(q) model can be estimated using ordinary least squares. A methodol-

ogy to test for the lag length of ARCH errors using the Lagrange multiplier test was
proposed by Robert Engle [56]. This procedure is as follows:

1. Estimate the best fitting autoregressive model AR(q)

yt = a0 + a1yt−1 + · · ·+ aqyt−q + ϵt = a0 +
q∑

i=1
aiyt−i + ϵt.

2. Obtain the squares of the error ϵ̂2 and regress them on a constant and q lagged
values:

ϵ̂2
t = α̂0 +

q∑
i=1

α̂iϵ̂
2
t−i

where q is the length of ARCH lags.

3. The null hypothesis is that, in the absence of ARCH components, we have
αi = 0 for all i = 1, · · · , q. The alternative hypothesis is that, in the presence
of ARCH components, at least one of the estimated αi coefficients must be
significant. In a sample of T residuals under the null hypothesis of no ARCH
errors, the test statistic T ′R2 follows χ2 distribution with q degrees of freedom,
where T ′ is the number of equations in the model which fits the residuals vs
the lags (i.e. T ′ = T − q). If T ′R2 is greater than the Chi-square table value, we
“reject” the null hypothesis and conclude there is an ARCH effect in the ARMA
model. If T ′R2 is smaller than the Chi-square table value, we do not reject the
null hypothesis.

100 Algorithms for Likelihood in Gaussian

In particular for Step 2, algorithms proposed in Sections 6.5.1 and 6.5.2 can be
applied to estimate αi, i = 1, . . . , q and select the order q which is favourable to be
sparse.

6.6 Algorithms for Chapter 2

Let’s revisit the nonconvex optimisation problem in Section 2.4.2

min
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ0 ,

where λ is the regularisation parameter.

This is the simplest case in this thesis. To begin with, the motivations and details
will be gone through step by step. Several different ways of derivation will be
introduced to get more insights. It should be noted that some contents in this Section
may be partially overlapping with previous Sections in this Chapter, e.g., Section 6.6.2
with Section 6.3, Section 6.6.3 with Section 6.5. To be coherent and provide more
insights, these overlapped contents will remain as they are. In the end, a distributed
optimisation framework is proposed based on ADMM technique [27].

6.6.1 Sparse Prior for Chapter 2

By setting B in (6.9) to identity matrix, the sparse prior is simply

p(β) = max
γj>0

N∏
j=1
N (βj|0, γj)φ(γj). (6.60)

For a fixed γ = [γ1, . . . , γN], we define a relaxed prior which is a joint probability
distribution over β and γ as

p(β; γ) =
∏
j

N (βj|0, γj)φ(γj) = p(β|γ)p(γ) ≤ p(β) (6.61)

where
p(β|γ) ≜

∏
j

N (βj|0, γj), p(γ) ≜
∏
j

φ(γj). (6.62)

6.6 Algorithms for Chapter 2 101

6.6.2 Optimisation Problem Derivation

Since the likelihood is p(y|β) is Gaussian, we can get a relaxed posterior which is
also Gaussian

p(β|y, γ) = p(y|β)p(β; γ)∫
p(y|β)p(β; γ)dβ

= N (mβ, Σβ). (6.63)

Defining Γ ≜ diag[γ], the posterior mean and covariance are given by:

mβ = ΓX⊤(σ2I + XΓX⊤)−1y, (6.64)

Σβ = Γ− ΓX⊤(σ2I + XΓX⊤)−1X. (6.65)

Now the key question is how to choose the most appropriate γ = γ̂ = [γ̂1, . . . , γ̂N]
to maximise

∏
j N (βj|0, γj)φ(γj) such that p(β|y, γ̂) can be a “good” relaxation to

p(β|y). Using the product rule for probabilities, we can write the full posterior as:

p(β, γ|y) ∝ p(β|y, γ)p(γ|y)

= N (mβ, Σβ)× p(y|γ)p(γ)
p(y) .

(6.66)

Since p(y) is independent of γ, the quantity p(y|γ)p(γ) =
∫

p(y|β)p(β|γ)p(γ)dβ is
the prime target for variational methods [208]. This quantity is known as evidence
or marginal likelihood. A good way of selecting γ̂ is to choose it as the minimiser of
the sum of the misaligned probability mass, e.g.,

γ̂ = argmin
γ≥0

∫
p(y|β) |p(β)− p(β; γ)| dβ

= argmax
γ≥0

∫
p(y|β)

n∏
j=1
N (βj|0, γj)φ(γj)dβ.

(6.67)

The second equality is a consequence of p(β; γ) ≤ p(β). The procedure in (6.67)
is referred to as evidence maximisation or type-II maximum likelihood [191]. It
means that the marginal likelihood can be maximised by selecting the most probable
hyperparameters able to explain the observed data. Once γ̂ is computed, an estimate
of the unknown weights can be obtained by setting β̂ to the posterior mean (6.64) as

β̂ = E(β|y; γ̂) = Γ̂X⊤(σ2I + XΓ̂X⊤)−1y, (6.68)

with Γ̂ ≜ diag[γ̂]. If an algorithm can be proposed to compute γ̂ in (6.67), we can
obtain an estimation of the posterior mean β̂.

102 Algorithms for Likelihood in Gaussian

Remark 17 By using a Laplace prior (see Remark 12) and the maximum a posterior (MAP)
formulation, one can easily obtain the ℓ1 minimiser, which is a penalised least square (PLS)
estimate. Therefore, it might be tempting to assume that the Bayesian framework is simply
a probabilistic re-interpretation of classical methods since we have just seen that the MAP
and PLS estimates are equivalent. However, this is not the case. It is sometimes overlooked
that the distinguishing element of Bayesian methods is really marginalisation, where instead
of seeking to “estimate” all “nuisance” variables in our models, we attempt to integrate
them out. In the Bayesian framework, marginal likelihoods have a natural built-in penalty
for more complex models. At a certain point, the marginal likelihood will begin to decrease
with increasing complexity, and hence, does not intrinsically suffer from the overfitting
problems that occur when considering only likelihoods. An intuitive explanation about
why the marginal likelihood will begin to decrease with increasing complexity is that, as
the complexity of the model increases, the prior will be spread out more thinly across both
the “good” models and the “bad” models. Because the marginal likelihood is the likelihood
integrated with respect to the prior, spreading the prior across too many models will place
too little prior mass on the “good” models, and as a result, cause the marginal likelihood to
decrease.

6.6.3 Centralised Optimisation Algorithm

Algorithm Derivation I: Duality Perspective

Proposition 6 The optimal hyperparameters γ̂ in (6.67) can be obtained by minimising the
following objective function

Lγ (γ) = log |σ2I + XΓX⊤|+ y⊤(σ2I + XΓX⊤)−1y +
∑N

j=1 p(γj), (6.69)

where p(γj) = −2 log φ(γj). The posterior mean is then given by

β̂ = Γ̂X⊤(σ2I + XΓ̂X⊤)−1y,

where Γ̂ = diag[γ̂].

Proof We first re-express mβ and Σβ in (6.64) and (6.65) using the Woodbury inversion
identity:

mβ = ΓX⊤(σ2I + XΓX⊤)−1y = σ−2ΣβX⊤y, (6.70)

Σβ = Γ− ΓX⊤(σ2I + XΓX⊤)−1XΓ = (Γ−1 + σ−2X⊤X)−1. (6.71)

6.6 Algorithms for Chapter 2 103

Since the data likelihood p(y|β) is Gaussian, we can write the integral for the marginal
likelihood in (6.67), as

∫
N (y|Xβ, σ2I)

N∏
j=1
N (βj|0, γj)φ(γj)dβ

=
(1

2πσ2

)M/2 (1
2π

)N/2 ∫
exp (−E(β)) dβ

N∏
j=1

φ(γj)√
γj

,

(6.72)

where
E(β) = 1

2σ2∥y−Xβ∥2 + 1
2β⊤Γ−1β,

Γ = diag(γ).

Equivalently, we get

E(β) = 1
2(β −mβ)⊤Σ−1

β (β −mβ) + E(y), (6.73)

where mβ and Σβ are given by (6.70) and (6.71). Using the Woodbury inversion identity,
we obtain:

E(y) = 1
2
(
σ−2y⊤y− σ−2y⊤XΣβΣ−1

β ΣβX⊤yσ−2
)

= 1
2y⊤(σ2I + XΓX⊤)−1y.

(6.74)

Using (6.73), we can evaluate the integral in (6.72) to obtain

∫
exp (−E(β)) dβ = exp (−E(y)) (2π)N/2|Σβ|1/2.

Exploiting the determinant identity, we have

|Γ−1||σ2I + XΓX⊤| = |σ2I||Γ−1 + σ−2X⊤X|,

from which we can compute the first term in (6.69) as

log |σ2I + XΓX⊤| = − log |Σβ|+ M log σ2 + log |Γ|.

104 Algorithms for Likelihood in Gaussian

Then applying a −2 log(·) transformation to (6.72), we have

− 2 log
∫

p(y|β)
N∏

j=1
N (βj|0, γj)φ(γj)dβ

=− 2 log
(1

2πσ2

)M/2 (1
2π

)N/2
exp (−E(y)) (2π)N/2|Σβ|1/2dβ

N∏
j=1

φ(γj)√
γj


=M log 2πσ2 − log |Σβ|+ 2E(y) + log |Γ|+

∑N

j=1 log φ(γj)

=− log |Σβ|+ M log 2πσ2 + log |Γ|+ y⊤(σ2I + XΓX⊤)−1y +
∑N

j=1 p(γj)

= log |σ2I + XΓX⊤|+ M log 2π + y⊤(σ2I + XΓX⊤)−1y +
∑N

j=1 p(γj).

From (6.67), we then obtain

γ̂ = argmin
γ≥0

log |σ2I + XΓX⊤|+ y⊤(σ2I + XΓX⊤)−1y +
∑N

j=1 p(γj).

We compute the posterior mean to get an estimate of β:

β̂ = E(β|y; γ̂) = Γ̂X⊤(σ2I + XΓ̂X⊤)−1y,

where Γ̂ = diag[γ̂].

Lemma 1 The cost function Lγ (γ) in (6.69) is a nonconvex function with respect to γ.

Proof We first show that the data-dependent term in (6.69) is convex in β and γ. From
(6.70), (6.71) and (6.74), the data-dependent term can be re-expressed as

y⊤
(
σ2I + XΓX⊤

)−1
y

=σ−2y⊤y− σ−2y⊤XΣβX⊤σ−2y

=σ−2∥y−Xmβ∥2
2 + m⊤

β Γ−1mβ

= min
β
{σ−2∥y−Xβ∥2

2 + β⊤Γ−1β},

(6.75)

where mβ is the posterior mean defined in (6.64). It can easily be shown that the minimisation
problem is convex in β and γ, where Γ ≜ diag[γ].

Next we define
h(γ) ≜ log |σ2I + XΓX⊤|+

∑N

j=1 p(γj), (6.76)

and show h(γ) is a concave function with respect to γ. log | · | is concave in the space
of positive semi-definite matrices. Moreover, σ2I + XΓX⊤ is an affine function of γ and

6.6 Algorithms for Chapter 2 105

is positive semidefinite for any γ ≥ 0. This implies that log |σ2I + XΓX⊤| is a concave,
nondecreasing function of γ. Since we adopt a super-Gaussian prior with potential function
φ(γj),∀j, as described in Proposition 3, a direct consequence is that p(γj) = − log φ(γj) is
concave.

Before presenting the main results of this Section, we introduce an important
duality lemma (see Sec. 4.2 in [97]) which is deeply rooted in convex analysis [162].
This duality lemma will be useful for the development of the convex optimisation
algorithm in this and the next Sections.

Lemma 2 It is a general fact of convex analysis that a concave function f(x) : RN → R can
be represented via a conjugate or dual function as follows f(x) = minx∗ [⟨x∗, x⟩ − f ∗(x∗)] ,

where the conjugate function f ∗ can be obtained from the following dual expression: f ∗(x∗) =
minx [⟨x∗, x⟩ − f(x)] .

We can express an nonconvex function h(γ) as h(γ) = minγ∗≥0 ⟨γ∗, γ⟩ − h∗(γ∗),
where h∗(γ∗) is defined as the concave conjugate of h(γ) and is given by h∗(γ∗) =
minγ≥0 ⟨γ∗, γ⟩ − h(γ).

Let h(γ) = log
∣∣∣σ2I + XΓX⊤

∣∣∣+∑N
j=1 p(γj), and assume that p(γj) is concave with

respect to γj
2. Using Lemma 2, we can create a strict upper bounding auxiliary

function L(γ, γ∗, β) of L(γ) in (6.69),

L(γ, γ∗, β)

≜ ⟨γ∗, γ⟩ − h∗(γ∗) + y⊤
(
σ2I + XΓX⊤

)−1
y

= 1
σ2 ∥y−Xβ∥2

2 +
N∑

j=1

(
βj

2

γj

+ γ∗
j γj

)
− h∗(γ∗).

(6.77)

For a fixed γ∗, we notice that L(γ, γ∗, β) is jointly convex in β and γ and can be
globally minimised by solving over γ and then β. Since βj

2/γj + γ∗
j γj ≥ 2βj

√
γ∗

j , for

any β, γj = |wj|/
√

γ∗
j minimises L(γ, γ∗, β).

The next step is to find a β̂ that minimises L(γ, γ∗, β). When γj = |wj|/
√

γ∗
j is

substituted into L(γ, γ∗, β), β̂ can be obtained by solving the following weighted
convex ℓ1-minimisation problem

ŵ = argmin
β
{∥y−Xβ∥2

2 + 2σ2
N∑

j=1

√
γ∗

j |βj|}, (6.78)

2This is not a strong assumption since all distributions in Remark 7 satisfy it.

106 Algorithms for Likelihood in Gaussian

where
√

γ∗
j are the weights.

We can then set
γj = |ŵj|√

γ∗
j

, ∀j, (6.79)

and, as a consequence, L(γ, γ∗, β) will be minimised for any fixed γ∗.

Now, consider again L(γ, γ∗, β) in (6.77). For any fixed γ and β, the tightest
bound can be obtained by minimising over γ∗. From the definition of γ∗, the
tightest value of γ∗ = γ̂∗ equals the slope at the current γ of the function h(γ) ≜
log |σ2I + XΓX⊤| + ∑

j p(γj). Using basic principles in convex analysis, we then
obtain the following analytic form for the optimiser γ∗:

γ̂∗ = ∇γ

log |σ2I + XΓX⊤|+
∑

j

p(γj)


= diag
[
X⊤

(
σ2I + XΓX⊤

)−1
X
]

+ p′(γ),
(6.80)

where p′(γ) = [p′(γ1), . . . , p′(γN)]T.

The algorithm is then based on successive iterations of (6.78), (6.99) and (6.101)
until convergence to γ̂. We then compute the posterior mean and covariance for the
faults as follows

β̂ = E(β|y; γ̂) = Γ̂XT(λI + XΓ̂X⊤)−1y,

Σβ̂ = Γ̂− Γ̂XT(λI + XΓ̂X⊤)−1X,
(6.81)

where Γ̂ = diag[γ̂]. The above described procedure is summarised in Algorithm 3.

Algorithm Derivation II: Convex Constraints Perpective

One problem in getting β̂ by computing γ̂ in (6.67) is that it is difficult to enforce
additional constraints on the parameters β of the system, such as positivity. An-
other motivation for constrained optimisation comes from stability considerations.
Typically, the underlying system is known a priori to be stable. A lot of stability
conditions can be formulated as convex optimisation problems (see [26, 89], etc).
Only few contributions are available in the literature that address the problem of
how to take into account a priori information on system stability [34, 229]. Based on
the terminology in [28], we consider the following assumption on β.

6.6 Algorithms for Chapter 2 107

Algorithm 3 Reweighted ℓ1-minimisation on hyperparameter γ

Data: Successive observations of y from t0 to tM .
Result: Posterior mean for β.

Step 1 Set iteration count k to zero and initialise each w1
j =

√
γ∗

j , with randomly chosen
initial values for γ∗

j , ∀j, e.g. with γ∗
j = 1, ∀j;

Step 2 Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;

Step 3 At the kth iteration, solve the reweighted ℓ1-minimisation problem

βk = argmin
β

1
2 ∥y−Xβ∥2

2 + λ
∑

j

|wk
j βj|, ∀j;

Step 4 Compute

γk
j =
|βk

j |
wk

j

,∀j;

Step 5 Update γ̂∗k+1 using (6.99)

γ̂∗k+1 = diag
[
X⊤

(
λI + XΓkX⊤

)−1
X
]

+ p′(γk);

Step 6 Update weights wk
j for the ℓ1-minimisation at the next iteration wk+1

j =
√

γ̂∗
j

k+1
;

Step 7 k → k + 1 and iterate Steps 2 to 5 until convergence to some γ̂ and Γ̂ = diag(γ̂);

Step 8 Compute β̂ = Γ̂XT(λI + XΓ̂X⊤)−1y.

Assumption 9 Constraints on the weights β can be described by a set of convex functions

H [I]
p (β) ≤ 0, p = 1, . . . , mI ,

H [E]
q (β) = 0, q = 1, . . . , mE.

(6.82)

The convex functions H [I]
p : RN → R represent inequality constraint functions. The convex

functions H [E]
q : RN → R represent equality constraint functions and H [E]

q (β) = a⊤
q β − bq

are affine functions where aq, bq ∈ RN .

Based on the analysis in Section 6.6.3, we first derive a dual objective function in
the β-space with convex constraints by considering the equivalent objective function

108 Algorithms for Likelihood in Gaussian

of (6.69) in the γ-space. We then show that this equivalent objective function is also
nonconvex.

Proposition 7 The estimate for β with constraints can be obtained by solving the optimisa-
tion problem

min
β
∥y−Xβ∥2

2 + σ2gsbl(β), subject to (6.82), (6.83)

where
gsbl(β) = min

γ≥0

(
β⊤Γ−1β + log |σ2I + XΓX⊤|+

∑N

j=1 p(γj)
)

and the estimate of the stochastic variable β is given by the poseterior mean mβ defined in
(6.64).

Proof Using the data-dependent term in (6.75), together with Lγ(γ) in (6.69), we can
create a strict upper bounding auxiliary function on Lγ(γ) as

L(γ, β) = 1
σ2∥y−Xβ∥2

2 + β⊤Γ−1β + log |σ2I + XΓX⊤|+
∑N

j=1 p(γj).

When we minimise over γ instead of β, we obtain

Lβ(β) ≜ min
γ≥0
Lγ,β(γ, β)

= 1
σ2∥y−Xβ∥2

2 + min
γ≥0

(
β⊤Γ−1β + log |σ2I + XΓX⊤|+

∑N

j=1 p(γj)
)

.
(6.84)

Then for β with convex constraints as described in Assumption 9, we can obtain the
formulation in Proposition 7.

From the derivations in (6.75), we can clearly see that the estimate of the stochastic
variable β is the poseterior mean mβ defined in (6.64).

Although all the constraint functions are convex in Proposition 7, we show in
the following Lemma that the objective function in (6.83) is nonconvex since it is the
sum of convex and concave functions.

Lemma 3 The penalty function gsbl(β) in Theorem 7 is a non-decreasing, concave function
of |β| which promotes sparsity on the weights β.

Proof It is shown in Lemma 1 that h(γ) is concave with respect to γ ≥ 0. According to the
duality lemma 2, we can express the concave function h(γ) as

h(γ) = min
γ∗≥0
⟨γ∗, γ⟩ − h∗(γ∗),

6.6 Algorithms for Chapter 2 109

where h∗(γ∗) is defined as the concave conjugate of h(γ) and is given by

h∗(γ∗) = min
γ≥0
⟨γ∗, γ⟩ − h(γ).

From the proof of Lemma 1, the data-dependent term y⊤
(
σ2I + XΓX⊤

)−1
y can be

re-expressed as

min
β

(1
σ2∥y−Xβ∥2

2 + β⊤Γ−1β
)

.

Therefore we can create a strict upper bounding auxiliary function Lγ,β(γ, β) on Lγ(γ) in
(6.69) by considering the fact that, in the dual expression,

Lγ,β(γ, β) ≜ ⟨γ∗, γ⟩ − h∗(γ∗) + y⊤
(
σ2I + XΓX⊤

)−1
y

= 1
σ2∥y−Xβ∥2

2 +
∑

j

(
βj

2

γj

+ γ∗
j γj

)
− h∗(γ∗).

(6.85)

We can then re-express gsbl(β) as

gsbl(β) = min
γ,γ∗≥0

(∑
j

(
β2

j /γj + γ∗
j γj

)
− h∗(γ∗)

)
. (6.86)

gsbl(β) is minimised over γ when γj = |βj|/
√

γ∗
j , ∀j. Substituting this expression into

gsbl(β), we get

gsbl(β) = min
γ∗≥0

(∑
j
2|
√

γ∗
j βj| − h∗(γ∗)

)
. (6.87)

This indicates that gsbl(β) can be represented as a minimum over upper-bounding hyper-
planes in ∥β∥1, and thus must be concave. gsbl(β) thus promotes sparsity. Moreover, gsbl(β)
must be non-decreasing since γ∗ ≥ 0.

We define the terms excluding h∗(γ∗) as

Lγ∗(γ, β) ≜ 1
σ2∥y−Xβ∥2

2 +
∑

j

(
βj

2/γj + γ∗
j γj

)
. (6.88)

For a fixed γ∗, we notice that Lγ∗(γ, β) is jointly convex in β and γ and can be
globally minimised by solving over γ and then β. Since βj

2/γj + γ∗
j γj ≥ 2βj

√
γ∗

j ,

for any β, γj = |wj|/
√

γ∗
j minimises Lγ∗(γ, β). When γj = |wj|/

√
γ∗

j is substituted

into Lγ∗(γ, β), β̂ can be obtained by solving the following weighted convex ℓ1-

110 Algorithms for Likelihood in Gaussian

minimisation procedure

ŵ = argmin
β

{
∥y−Xβ∥2

2 + 2σ2∑N

j=1 |
√

γ∗
j βj|

}
. (6.89)

We can then set γj = |ŵj|/
√

γ∗
j , ∀j. As a consequence, Lγ∗(γ, β) will be minimised

for any fixed γ∗. Due to the concavity of gsbl(β), the objective function in (6.83) can
be optimised using a reweighted ℓ1-minimisation in a similar way as was considered
in (6.89). The updated weight at the kth iteration is then given by

u
(k)
j ≜ ∂gsbl(β)

2∂|βj|

∣∣∣∣∣
β=β(k)

=
√

γ∗
j . (6.90)

We can now explain how the update of the parameters can be performed based
on the above. We start by setting the iteration count k to zero and u

(0)
j = 1, ∀j. At

this stage, the solution is a typical ℓ1-minimisation solution.Then at the kth iteration,
we initialise u

(k)
j =

√
γ

∗(k)
j , ∀j and then minimise over γ using γj = |βj|/

√
γ∗

j , ∀j.
Consider again Lγ,β(γ, β). For any fixed γ and β, the tightest bound can be obtained
by minimising over γ∗. The tightest value of γ∗ = γ̂∗ equals the gradient of the
function

h(γ) ≜ log |σ2I + XΓX⊤|+
∑N

j=1 p(γj)

defined in Lemma 1 at the current γ. γ∗ has the following analytical expression:

γ̂∗ = ∇γ

(
log |σ2I + XΓX⊤|+

∑N

j=1 p(γj)
)

= diag
[
X⊤

(
σ2I + XΓX⊤

)−1
X
]

+ p′(γ),
(6.91)

where p′(γ) = [p′(γ1), . . . , p′(γN)]⊤. The optimal γ∗(k+1) can then be obtained as

γ∗(k+1) = diag
[
X⊤

(
σ2I + XΓ(k)X⊤

)−1
X
]

+ p′(γ(k)). (6.92)

After computing the estimation of γj
(k) = |β(k)

j |√
γ

∗(k)
j

, we can compute γ∗(k+1), which

gives
γ

∗(k+1)
j = X⊤

j

(
σ2I + XU(k)W(k)X⊤

)−1
Xj + p′(γ(k)

j),

6.6 Algorithms for Chapter 2 111

where
Γ(k) ≜ diag

[
γ(k)

]
,

U(k) ≜ diag
[
u(k)

]−1
= diag

[√
γ∗(k)

]−1
,

W(k) ≜ diag
[
|β(k)|

]
.

We can then define

u
(k+1)
j ≜

√
γ

∗(k+1)
j

for the next iteration of the weighted ℓ1-minimisation.

Algorithm Derivation III: Convex Concave Procedure Perspective

In this Section, we derive the algorithm form the perspective of convex concave
procedure. According to Proposition 7, the optimisation problem can be cast as the
following nonconvex optimisation problem

min
γ>0,β

1
σ2∥y−Xβ∥2

2 + β⊤Γ−1β + log |σ2I + XΓX⊤|, (6.93)

where Γ is a diagonal matrix with diagonal entries γj . Note that the structure of this
optimisation programme is similar to the one set up in [32]. However, in our case
the logarithmic penalty is on a full matrix, while in [32] the logarithmic penalty is on
a diagonal matrix. This results in a better performance of (6.93) in terms of sparsity
of solutions [212]. However, finding a solution to the optimisation problem (6.93) is
more computationally expensive.

We first show that the stated program can be formulated as a convex-concave
procedure (CCCP). Again, to be more general, β is substituted with Bβ. We have
the following Proposition.

Proposition 8 The following programme

min
β,Γ

1
σ2 (y−Xβ)⊤ (y−Xβ) + β⊤B⊤Γ−1Bβ + log |Γ|+ log

∣∣∣∣B⊤Γ−1B + 1
σ2 X⊤X

∣∣∣∣ .
can be formulated as a convex-concave procedure (CCCP).

Proof In the first half part of the proof, we show that the stated program can be formulated
as a convex-concave procedure (CCCP).

112 Algorithms for Likelihood in Gaussian

Fact on convexity: the function

u(β, Γ) = 1
σ2 (y−Xβ)⊤ (y−Xβ) + β⊤B⊤Γ−1Bβ

∝ 1
2 (y−Xβ)⊤ (y−Xβ) + σ2

2 β⊤B⊤Γ−1Bβ

(6.94)

is convex jointly in β, Γ. The function f(β, Y) = β⊤Y −1β is jointly convex in β, Y (see,
[28, p.76]), hence u as a sum of convex functions is convex.

Fact on concavity: the function

v(Γ) = log |Γ|+ log |B⊤Γ−1B + 1
σ2 X⊤X|

is concave in Γ, if X⊤X is invertible. We exploit the properties of the determinant of a matrix

|A22||A11 − A12A
−1
22 A21| =

∣∣∣∣∣∣
A11 A12

A21 A22

∣∣∣∣∣∣ = |A11||A22 − A21A
−1
11 A12|.

We have
v(Γ) = log |Γ|+ log |B⊤Γ−1B + 1

σ2 X⊤X|

= log
(
| − Γ||B⊤Γ−1B + 1

σ2 X⊤X|
)

= log

∣∣∣∣∣∣
 1

σ2 X⊤X B⊤

B −Γ

∣∣∣∣∣∣
= log

∣∣∣X⊤X
∣∣∣+ log

∣∣∣Γ + σ2B(X⊤X)−1B⊤
∣∣∣ ,

(6.95)

which is a log-determinant of an affine function of a semidefinite matrix Γ and hence concave.
If X⊤X is not invertible, then the proof is a bit longer, but it is also possible to show that
v(Γ) is concave. ■

The cost function in (6.93) is convex in β but nonconvex in Γ. This nonconvex
optimisation problem can be formulated as a convex convave procedure (CCCP). It
can be shown that solving this CCCP is equivalent to solving an iterative convex
optimisation programme, which converges to a stationary point [179]. Hereafter, we
provide another derivation of the algorithm presented in [212]. From our point of
view this derivation is much simpler and hence we present it here. In Section 6.6.4,
we will derive a decentralised version of this iterative algorithm using ADMM.

6.6 Algorithms for Chapter 2 113

Defining the following two expressions

u(β, γ) ≜ ∥y−Xβ∥2
2 + λ

∑
j

β2
j

γj

,

v(γ) ≜ − log |σ2I + XΓX⊤|.
(6.96)

Note that u(β, γ) is jointly convex in β and γ, and v(γ) is convex in γ. As a conse-
quence the minimisation of the cost function (6.93) can be formulated as a concave-
convex procedure:

min
γ≥0,β

u(β, γ)− v(γ). (6.97)

Since v(γ) is differentiable over γ, the problem in (6.97) can be transformed into the
following iterative convex optimisation problem

[
βk+1, γk+1

]
= argmin

γ≥0,β
u(β, γ)−∇γv(γk)⊤γ. (6.98)

Using basic principles in convex analysis, we then obtain the following analytic form
for the negative gradient of v(γ) at γ:

αk = −∇γv(γk)⊤

= −∇γ

(
− log |σ2I + XΓX⊤|

)
|γ=γk

= diag
[
XT

(
λI + XΓkX⊤

)−1
X
]

.

The iterative procedure (6.98) can then be formulated as

[
βk+1, γk+1

]
= argmin

γ≥0,β
∥y−Xβ∥2

2 + λ
∑

j

(
β2

j

γj

+ αk
j γj

)
. (6.99)

The objective function in (6.99) is jointly convex in β and γ and can be globally
minimised by solving over γ and then β. If β is fixed, this gives

γk+1 = argmin
γ≥0

∥y−Xβ∥2
2 + λ

∑
j

(
β2

j

γj

+ αk
j γj

)
. (6.100)

114 Algorithms for Likelihood in Gaussian

We notice that in (6.100), γk+1 has a closed form solution γk+1
j = |βj|/

√
αk

j . If

γk+1
j = |wj|/

√
αk

j is substituted into (6.100), we obtain

βk+1 = argmin
β
∥y−Xβ∥2

2 + λ
∑

j

(
β2

j

γk+1
j

+ αk
j γk+1

j

)

= argmin
β

1
2∥y−Xβ∥2

2 + λ
N∑

j=1
|
√

αk
j βj|.

After computing βk+1, we can set

γk+1
j =

|βk+1
j |√
αk

j

, ∀j, (6.101)

and then update αk+1 by (6.99).

The iterative procedure can be initialised by setting γ1
j equal to any positive real

scalar. However, some additional insight can be obtained by initialising α1
j = 1, ∀j

instead. In that case, the first iteration becomes a linear regression problem with ℓ1

penalty on the parameters β:

β1 = argmin
β

1
2∥y−Xβ∥2

2 + λ∥β∥ℓ1 .

We can then update γ1
j using γ1

j = β1/
√

α1
j . Using this initialisation, we provably

get results at least not worse than the generalised Lasso algorithm. The approach is
summarised as Algorithm 4.

Implementation, Computational Complexity and Convergence

There is a heuristic option which can be used to speed up the algorithm. At every
iteration of the algorithm, we update the parameters γ by means of equations (6.103)
and (6.104), which involve the inversion of a matrix of large dimensions. One can
speed up this part of the algorithm by pruning out the hyperparameter space of
parameters γj (and respectively βj) that are close to zero within some small threshold.
According to the initialisation above, the first iteration of the algorithm (6.102) is
actually a Lasso problem, which tends to yield a sparse solution, that is a solution
with many γj close to zero within some small threshold. Consequently, many γj

6.6 Algorithms for Chapter 2 115

Algorithm 4 Reweighted ℓ1-minimisation on parameter β

1: Set Θ1 be equal to the identity matrix;
2: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
3: for k = 1, . . . , kmax do
4: Update the parameters as follows

βk+1 = argmin
β

1
2∥y−Xβ∥2

2 + λ∥Θkβ∥ℓ1 subject to (6.82); (6.102)

γk+1
j = βk+1

Θk
jj

; (6.103)

Θk+1
jj =

(
X⊤

j,:

(
λI + XΓk+1X⊤

)−1
Xj,:

)1/2
; (6.104)

5: if A stopping criterion is satisfied then
6: Break;
7: end if
8: end for

(therefore βj) can be pruned out already after the first iteration. Pruning at every
iteration is a heuristic, which can be used to speed up the algorithm.

There are two important aspects of the reweighted ℓ1-minimisation algorithm.
First, for convex optimisation, there will be no exact zeros during the iterations and
strictly speaking, we will always get a solution without any zero entry even when
the RIP condition holds. However, some of the estimated weights will have very
small magnitudes compared to those of other weights, e.g., ±10−5 compared to 1,
or the “energy” some of the estimated weights will be several orders of magnitude
lower than the average “energy”, e.g., ∥βj∥2

2 ≪ ∥β∥2
2. Thus a threshold needs to

be defined a priori to prune “small” weights at each iteration. The second aspect
concerns the computational complexity of this approach. The repeated execution
of Algorithm 4 is very cheap computationally since it scales as O(MN∥β(k)∥0) (see
[32, 212]). Since at each iteration certain weights are estimated to be zero, certain
dictionary functions spanning the corresponding columns of X can be pruned out
for the next iteration.

It is natural to investigate the convergence properties of this iterative reweighted
ℓ1-minimisation procedure. Let A(·) denote a mapping that assigns to every point
in RN

+ the subset of RN
+ which satisfies Steps 3 and 4 in Algorithm 3. Then the

convergence property can be established as follows:

116 Algorithms for Likelihood in Gaussian

Proposition 9 Given the initial point γ(0) ∈ Rn
+ the sequence {γ(k)}∞

k=0 is generated
satisfying γ(k+1) ∈ A(γ(k)). This sequence is guaranteed to converge to a local minimum
(or saddle point) of Lγ in (6.69).

Proof The proof is in one-to-one correspondence with that of the Global Convergence
Theorem [228].

1. The mapping A(·) is compact. Since any element of γ is bounded, L (γ) will not
diverge to infinity. In fact, for any fixed y, X and γ, there will always exist a radius r

such that for any ∥γ(0)∥ ≤ 0, ∥γ(k)∥ ≤ 0.

2. We denote γ ′ as the non-minimising point of L(γ ′′) < L(γ ′), ∀ γ ′′ ∈ A(γ ′). At any
non-minimising γ ′ the auxiliary objective function L(γ∗)′ obtained from γ∗

σ2I+XΓX⊤

will be strictly tangent to L(γ) at γ ′. It will therefore necessarily have a minimum
elsewhere since the slope at γ ′ is nonzero by definition. Moreover, because the log | · |
function is strictly concave, at this minimum the actual const function will be reduced
still further. Consequently, the proposed updates represent a valid descent function
[228].

3. A(·) is closed at all non-stationary points.

6.6.4 Distributed Optimisation Algorithm

Motivation

We are living in the era of “big data”. The answer to the question “What is big
data?” provided by the research and advisory company Gartner is now widely
accepted. According to Gartner, the Five ‘V’s of big data are: volume, velocity,
value, veracity, and variety. One important category of data is time series data. Time
series data satisfy Gartner’s Five ‘V’s definition in many contexts, from complex
physics simulations to biological and environmental research, to finance, business,
healthcare, meteorology, and genomics. Fuelled by recently emerging areas such
as Cloud Computing, Internet of Things, and Cyber Physical Systems, big data
is increasingly playing an important role in modern society [222]. In these areas,
massive time series data are generated. Based on these time series data a model
of the dynamical system generating these data is sought after for analysis and/or
control purposes. For large-scale industrial processes, the corresponding models
are inevitably complex with various nonlinearities and noise terms. Modelling
such nonlinear systems directly from time series data is known as nonlinear system

6.6 Algorithms for Chapter 2 117

identification [117, 21]. Therefore, either the number of basis function is very large
or the number of observations is very large

We will extend the centralised framework into a distributed nonlinear identi-
fication framework, thereby offering a means to improve on the computational
performance of the algorithm. For this, the centralised identification problem is split
into several sub-problems solved independently and in parallel. Parallelisation is
performed by means of the Alternating Direction Method of Multipliers or ADMM
(cf. [27]), which is a powerful algorithm for solving structured convex optimisation
problems. ADMM was introduced in optimisation in the 1970’s and is closely related
to many other optimisation algorithms including Bregman iterative algorithms,
Douglas-Rachford splitting, and proximal point methods (cf. [27] and references
therein). ADMM has been shown to have strong convergence properties and to be
useful for solving, by decomposition, large optimisation problems, which cannot
be handled by generic optimisation solvers. ADMM has been applied in many
areas, such as filtering [207], image processing [61] as well as large-scale problems in
statistics and machine learning [27]. This approach has the advantage that memory
and computational requirements can be both reduced in comparison to generic
centralised solvers.

Alternating Direction Method of Multipliers

Recall that, in fact, we have nx independent regression problems (see (6.102)) More-
over, the number of dictionary functions can be very large and at each iteration a
nonsmooth ℓ1 optimisation problem is solved, which is computationally expensive.
Hereafter, we show how an approach based on the so-called ADMM can be used to
significantly speed up the computation.

ADMM can be used to obtain solutions to problems of the following form:

min
β

f(β) + g(z),

subject to Pβ + Qz = c,
(6.105)

where β ∈ Rn and z ∈ Rm, P ∈ Rp×n, Q ∈ Rp×m, and c ∈ Rp. The functions f(·) and
g(·) are convex, but can be nonsmooth, e.g. weighted ℓ1 norm. The first step of the
method consists in forming the augmented Lagrangian

Lρ =f(β) + g(z) + u⊤(Pβ + Qz− c)+
ρ/2∥Pβ + Qz− c∥2

2.
(6.106)

118 Algorithms for Likelihood in Gaussian

After that optimisation programmes with respect to different variables can be solved
separately as follows:

βτ+1 := argmin
β

(
f(β) + ρ

2∥Pβ + Qzτ − c + uτ∥2
2

)
zτ+1 := argmin

z

(
g(z) + ρ

2∥Pβτ+1 + Qz− c + uτ∥2
2

)
uτ+1 := uτ + Pβτ+1 + Qzτ+1 − c.

If g(z) is equal to λ∥z∥1, then the update on z is simply

zτ+1 = Sλ/ρ(Pβτ+1 + uτ),

where Sλ/ρ is the soft thresholding operator defined as

Sλ/ρ(x) = max(0, x− λ/ρ)−max(0,−x− λ/ρ).

Based on the above, we can design a simple algorithm to solve a nonsmooth opti-
misation problem in a decentralised fashion. Moreover, this algorithm converges
provided the following stopping criterion is satisfied:

∥βτ − zτ∥2 ≤ ϵprimal, ∥ρ(zτ − zτ−1)∥2 ≤ ϵdual,

where, the tolerances ϵprimal > 0 and ϵdual > 0 can be set via an “absolute plus
relative” criterion, e.g.

ϵprimal =
√

nϵabs + ϵrel max(∥βτ∥2, ∥zτ∥2),
ϵdual =

√
nϵabs + ϵrelρ∥uτ∥,

where ϵabs and ϵrel are absolute and relative tolerances. More details can be found in
[27].

Distributed Computation When Number of Basis Function is Large (N ≫M)

When the number of candidate dictionary functions is very large, at least larger than
the number of observations M , the associated computational complexity can become
prohibitive. To alleviate this dictionary function scale-up problem, the creation of
a distributed version of the algorithm becomes necessary. To achieve scale-up and
allow parallelisation, we need to partition across the set of candidate functions in

6.6 Algorithms for Chapter 2 119

order to define small optimisation sub-programmes. Each such sub-programme
needs to deal with its split of candidate functions independently and then update
the variables shared between the sub-programmes. This corresponds to a standard
sharing problem (cf. [27]).

In our case, we partition the parameter vector β as β = (β1, . . . , βn), with βi ∈
RNi , where

∑n
i=1 Ni = N . We then accordingly partition the dictionary matrix X as

X = [X1, . . . , Xn], with Xi ∈ RM×Ni . Thus Xβ = ∑n
i=1 Xiβi, i.e. Xiβi can be thought

of as a ‘partial’ prediction of y using only the candidate functions referenced in βi.
Let Θ be a diagonal matrix with values

√
αk

j on the diagonal and admitting the same
partitioning as the variables βi, that is every matrix Θj is a block of Θ with indices
in rows and columns spanning between

∑j
i=1 Ni + 1 and

∑j+1
i=1 Ni.

Now the update on β, i.e. the optimisation programme defined in (6.102), be-
comes

min
β

1
2∥

N∑
i=1

Xiβi − y∥2
2 + λ

N∑
i=1
∥Θiβi∥1.

In order to apply ADMM, we introduce new variables zi equal to Xiβi. Doing so,
we can rewrite the programme as follows:

min 1
2∥

N∑
i=1

zi − y∥2
2 + λ

N∑
i=1
∥Θiβi∥1,

subject to Xiβi − zi = 0, i = 1, . . . , N,

with the new variables zi ∈ RM . The ADMM algorithm can be applied directly to
this problem as follows:

βτ+1
i := argmin

βi

ρ

2∥Xiβi − zk + uk∥2
2 + λ∥Θiβi∥1

zτ+1 := argmin
z

1
2∥

N∑
i=1

zi − y∥2
2

+
N∑

i=1

ρ

2∥Xiβ
τ+1
i − zi + uτ

i ∥2
2

uτ+1
i := uτ

i + Xβτ+1 − zτ+1. (6.107)

where z stacks the variables zi into a vector. The update on z is performed according
to the sharing problem solution. That is, we first fix the average z = 1/N

∑N
i=1 zi and

120 Algorithms for Likelihood in Gaussian

then solve the following programme with respect to zi:

min
zi
∥Nz− y∥2

2 +
N∑

i=1

ρ

2∥Xiβ
τ+1
i − zi + uτ

i ∥2
2

subject to: z = 1/N
N∑

i=1
zi.

This gives a closed form solution

zτ+1
i = zτ+1 + Xiβ

τ+1
i + uτ −Xβ

τ+1 − uτ ,

where Xβ
τ+1 = (1/N)∑N

i=1 Xiβ
τ+1
i and uτ+1 = (1/N)∑N

i=1 uτ+1
i . Hence the update

on the whole vector z can be performed using a much smaller problem

zτ+1 = argmin 1
2∥Nz− y∥2

2 +
N∑

i=1

ρ

2∥z−Xβτ+1 − uτ∥2
2.

Additionally, substituting the expression for zτ+1
i into the update for ui, we find that

uτ+1
i = Xβ

k+1 + uτ − zτ+1,

which shows that, as in the sharing problem, all the dual variables are equal. Using
a single dual variable uk ∈ Rm, eliminating zi, and defining

bτ
i = Xiβ

τ
i + zτ −Xβ

τ − uτ ,

we arrive at:

βτ+1
i = argmin

βi

(
ρ

2∥Xiβi − bτ
i ∥2

2 + λ∥Θiβi∥1

)
, (6.108)

zτ+1 = 1
N + ρ

(
y + ρXβ

τ+1 + ρuk
)

, (6.109)

uτ+1 = uτ + Xβ
τ+1 − zτ+1. (6.110)

The update of βi is a non-smooth optimisation problem (6.108) that is solved
again using ADMM as described above. Note, however, that it is not necessary to
distribute this part of the computation, since the computation of the outer iteration
loop is already distributed. Hence, ADMM here serves only as a solver for the
non-smooth optimisation problem (6.108).

6.7 Algorithms for Chapter 3 121

Distributed Computation When Number of Observations is Large (M ≫ N)

When the number of observations, M , is very large or when data are naturally
collected or stored in a distributed fashion, it is convenient or, even, indispensable
to be able to recourse to a distributed version of the identification algorithm [27].

To this end, we partition the dictionary matrix X and data vector y as X =


X1
...

Xn

,

and y =


y1
...

yn

, with Xi ∈ RMi×N where
∑n

i=1 Mi = M. In order to apply ADMM, we

introduce new variables zi equal to Xiβi. Now the update on β, i.e. the optimisation
programme defined in (6.102), takes the following consensus form:

min 1
2∥

n∑
i=1

Xiβi − yi∥2
2 + λ∥z∥1,

subject to Θβi − z = 0, i = 1, . . . , n.

(6.111)

Based on this we arrive at the following distributed algorithm [27]:

βk+1
i = argmin

βi

(1
2∥Xiβi − bi∥2

2 + ρ

2∥Θβi − zk + uk
i ∥2

2

)
, (6.112)

zk+1 = Sλ/ρ

(
β

k+1 + uk
)

, (6.113)

uk+1 = uk
i + βk+1

i − zk+1. (6.114)

The update for βi in (6.112) takes the form of a ridge regression problem, with the
following analytical solution:

βk+1
i =

(
X⊤

i Xi + ρΘ⊤Θ
)−1 (

X⊤
i yi + ρ(zk − uk

i)
)

.

6.7 Algorithms for Chapter 3

Let’s revisit the nonconvex optimisation problem in Section 3.3.2

min
β

1
2∥y−Xβ∥2

2 + λ
N∑

n=1
∥∥βn∥ℓ2∥ℓ0 ,

where λ is the regularisation parameter.

122 Algorithms for Likelihood in Gaussian

6.7.1 Sparse Prior for Chapter 3

The same as the sparse prior in (6.3), i.e.,

p(β) =
N∏

i=1
p(βi) (6.115)

where p(βi) is structured as follows instead

p(βi) ∝ exp
−1

2

C∑
j=1

g(β[j]
i)
 =

C∏
j=1

exp
[
−1

2g(β[j]
i)
]

=
C∏

j=1
p(β[j]

i), (6.116)

with g(β[j]
i) being a given function of β

[j]
i . Generally, β in (6.115) is sparse, and

therefore certain sparsity properties should be enforced on β. To this effect, the
function g(·) is usually chosen to be a concave, non-decreasing function of |β[j]

i | [214].
Examples of such functions g(·) include Generalised Gaussian priors and Student’s t
priors (see [134, 214] for details).

Computing the posterior mean E(β|y) is typically intractable because the poste-
rior p(β|y) is highly coupled and non-Gaussian. To alleviate this problem, ideally
one would like to approximate p(β|y) as a Gaussian distribution for which efficient
algorithms to compute the posterior exist [22]. For this, the introduction of lower
bounding super-Gaussian priors p(β[j]

i), i.e.,

p(β[j]
i) = max

γi>0
N (β[j]

i |0, γi)φ(γi),

can be used to obtain an analytical approximation of p(β|y) [134].

Note that problem (9.8) has a block-wise structure, i.e. the solution β is expected
to be block-wise sparse. Therefore, sparsity promoting priors should be specified for
p(βi), ∀i. To do this, for each block βi, we define a hyper-parameter γi such that

p(βi) = max
γi>0
N (βi|0, γiIC)φ(γi)

= max
γi>0

C∏
j=1
N (β[j]

i |0, γi)φ(γi),
(6.117)

where φ(γi) is a nonnegative function, which is treated as a hyperprior with γi being
its associated hyperparameter. Throughout, we call φ(γi) the “potential function”.
This Gaussian relaxation is possible if and only if log p(

√
βi) is concave on (0,∞).

6.7 Algorithms for Chapter 3 123

Then we have

p(β) =
N∏

i=1
p(βi) = max

γ>0
N (β|0, Γ)φ(γ), (6.118)

where
γi = [γi, . . . , γi] ∈ RC , Γi = diag [γi] ,

γ = [γ1, . . . , γN] ∈ RNC , Γ = diag [γ] .
(6.119)

6.7.2 Optimisation Algorithm

Optimisation Problem Definition

The optimisation problem is defined exactly the same as (6.13) in Proposition 4,
simply by replacing B with identity matrix.

Convex-Concave Procedure

Based the same optimisation principle in Section 6.4 and algorithm derivation in
Section 6.5, we then obtain the following analytic form for the negative gradient of
v(γ) at γ (using the chain rule):

αk ≜−∇γv(γ, Θ∗)⊤|γ=γk

=∇γ

[
log |Γ−1 + X⊤Θ∗X|+ log |Γ|

]
= diag{

[
−(Γk)−1 + X⊤Θ∗X

]−1
} · diag{−(Γk)−2}+ diag−1{Γk}

=
[

αk
1 · · · αk

N

]
︸ ︷︷ ︸

N Blocks

=
[

αk
1, . . . , αk

1︸ ︷︷ ︸
C Elements

· · · αk
N , . . . , αk

N︸ ︷︷ ︸
C Elements

]
.

(6.120)

Therefore, the iterative procedures (6.31) and (6.32) for βk+1 and γk+1, respectively,
can be formulated as

[
βk+1, γk+1

]
= argmin

γ≻0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) +

N∑
i=1

(
β⊤

i βi

γi

+ Cγiα
k
i

)
. (6.121)

The optimal γ components are obtained as:

γi = ∥βi∥2√
Cαk

i

. (6.122)

124 Algorithms for Likelihood in Gaussian

If γ is fixed, we have

βk+1 = argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ) + 2
N∑

i=1
∥wk

i · βi∥2, (6.123)

where
wk

i = Cαk
i . (6.124)

We can then inject this into (6.122), which yields

γk+1
i = ∥β

k+1
i ∥2√
Cαk

i

. (6.125)

The pseudo code is summarised in Algorithm 5.

Algorithm 5 Reweighted Group ℓ1 type algorithm for Gaussian likelihood

1: Collect C heterogeneous groups of time series data from the system of interest
(assuming the system can be described by (3.3));

2: Select the candidate basis functions that will be used to construct the dictionary
matrix described;

3: Initialise the unknown w as a unit vector;
4: Fix/given the known inverse covariance matrix Π−1 = Θ = Θ∗.
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 0, . . . , kmax do
7: Solve the following weighted minimisation problem over β, subject to the

convex constraints (2.41):

βk+1 = argmin
β

1
2 (y−Xβ)⊤ Θ∗ (y−Xβ) + λ

N∑
i=1
∥wk

i · βi∥2; (6.126)

8: γk+1
i = ∥βk+1

i ∥2√
wk

i

, γk+1
i =

[
γk+1

i , . . . , γk+1
i

]
∈ RC ;

9: γk+1 =
[
γk+1

1 , . . . , γk+1
N

]
∈ RNC , Γk+1 = diag

[
γk+1

]
;

10: αk+1 = diag{
[
−(Γk+1)−1 + X⊤Θ∗X

]−1
} · diag{−(Γk+1)−2}+ diag−1{Γk+1};

11: αk+1 is structured as
[

αk+1
1 , . . . , αk+1

1︸ ︷︷ ︸
C Elements

· · · αk+1
N , . . . , αk+1

N︸ ︷︷ ︸
C Elements

]
;

12:
13: wk+1

i = Cαk+1
i ;

14: if a stopping criterion is satisfied then
15: Break;
16: end if
17: end for

6.7 Algorithms for Chapter 3 125

Connection to Semidefinite Programming and the Sparse Multiple Kernel Method

The iteration in (6.121) can be rewritten in the following compact form

[
βk+1, γk+1

]
= argmin

γ⪰0,β
(y−Xβ)⊤ Θ∗ (y−Xβ) + β⊤Γ−1β −∇γv(γk, Θk)⊤γ.

(6.127)
This is equivalent to the following Semidefinite Programming (SDP) by using the
standard procedure in [28]

min
z,β,γ

z−∇γv(γk, Θk)⊤γ

subject to


z (y−Xβ)⊤ β⊤

y−Xβ (Θ∗)−1 0
β 0 Γ

 ⪰ 0

γ ⪰ 0

The cost of solving this SDP is at least N3 as well as M . Therefore, solving this
SDP is too costly for all but problems with a small number of variables. This
means that the number of samples, the dimension of the system, etc., can not be
too large simultaneously. In this SDP formulation, Γ is closely related to the sparse
multiple kernel presented in [35]. Certain choice of kernels may introduce some
good properties or help reduce algorithmic complexity. In our case, we choose Γ to
have a diagonal or a DC kernel structure.

ADMM Implementation

Essentially, Algorithm (5) consists of a reweighted Group Lasso algorithm (6.126).
Algorithm (5) can be implemented using the Alternating Direction Method of Multi-
pliers (ADMM) [27]. This ADMM parallelisation allows to distribute the algorithmic
complexity to different threads and to build a platform for scalable distributed
optimisation. This is key to be able to deal with problems of large dimensions.

More specifically, step on Maximum a Posterior estimation can be solved using
ADMM instead:

min
β

(y−Xβ)⊤ Θ∗ (y−Xβ) + 2
N∑

i=1
∥zi∥2,

subject to wk
i βi − zi = 0, i = 1, . . . , N.

(6.128)

126 Algorithms for Likelihood in Gaussian

The optimisation programmes with respect to different variables can be solved
separately as follows:

βτ+1 =
(
X⊤ΘkX + ρI

)−1 (
X⊤Θky + ρ

(
zk − uk

))
,

zτ+1
i = Sλ/ρ

(
βτ+1

i + uτ
)

, i = 1, . . . , N,

uτ+1 = uτ + βτ+1 − zτ+1.

S is the vector soft thresholding operator Sκ : RC → RC is

Sκ(a) = (1− κ/∥a∥)+a, (6.129)

where Sκ(0) = 0. This formula reduces to the scalar soft thresholding operator when
a is a scalar. More details can be found in [27].

6.8 Algorithms for Chapter 4

Revisit the optimisation problem (4.16) in Chapter 4

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ0 + λ2

N∑
n=1
∥∥βn∥ℓ2∥ℓ0 , (6.130)

and the ℓ1 convex relaxation in (4.22)

min
β

1
2∥y−Xβ∥2

2 + λ1

N∑
n=1
∥Dnβn∥ℓ1 + λ2

N∑
n=1
∥βn∥ℓ2 . (6.131)

6.8.1 Sparse Prior for Chapter 4

As defined in (4.8) (drop the subscript i for simplicity), where in the bracket m, m =
1, . . . , M is the time index

β ≜
[

β1(1), . . . , β1(M) . . . βN(1), . . . , βN(M)
]⊤

=
[

β⊤
1 . . . β⊤

N

]⊤
∈ RMN .

(6.132)

6.8 Algorithms for Chapter 4 127

We first specially designed a new matrix a new B matrix:

B ≜
 I

D

 =



I1
. . .

IN

D1
. . .

DN


∈ Rℵ×MN ,

In ∈ RM×M , Dn ∈ Rℵ̄×M ,

ℵ =
N∑

n=1
M +

N∑
n=1
ℵ̄.

(6.133)

Using the specially designed matrix B, we can penalise a) the number of switches
that occur using the upper part of B and b) the number of non-zero element in every
identified model using the lower part of B.

Next, we define the sparse prior. Fist, the hyperparameter vector is structured
block-wise as follows:

γ̃ =
[

γ̃1, . . . , γ̃1︸ ︷︷ ︸
M elements

. . . γ̃N , . . . , γ̃N︸ ︷︷ ︸
M elements

]
,

γ̄ =
[

γ̄11, . . . , γ̄1ℵ̄︸ ︷︷ ︸
ℵ̄ elements

. . . γ̄N1, . . . , γ̄N ℵ̄︸ ︷︷ ︸
ℵ̄ elements

]
,

Γ̃ = diag [γ̃] , Γ̄ = diag [γ̄] ,

Γ =
 Γ̃

Γ̄

 = diag [γ̃, γ̄] ,

(6.134)

128 Algorithms for Likelihood in Gaussian

then get the sparse prior as

p(Bβ) = N (Bβ|0, Γ)φ(Γ)

=
N∏

n=1
p(βn) ·

N∏
n=1

p(Dnβn)

= N (β|0, Γ̃)φ(Γ̃) · N (Dβ|0, Γ̄)φ(Γ̄)

=
N∏

n=1
N (βn|0, γ̃nIℵ̃)φ(γ̃n) ·

N∏
n=1
N (Dnβn|0, γ̄nIℵ̄)φ(γ̄n)

=
N∏

n=1

M∏
i=1
N ({In}i,: βn|0, γ̃n)φ(γ̃n) ·

N∏
n=1

ℵ̄∏
i=1
N ({Dn}i,: βn|0, γn)φ(γ̄n).

(6.135)

6.8.2 Optimisation Algorithm

Optimisation Problem Definition

The optimisation problem is defined exactly the same as (6.13) in Proposition 4.

Convex-Concave Procedure

We first look at the hyperparameter Γ̃. Since

M∑
i=1

(
β⊤

n βn

γ̃n

+ α̃k
nγ̃n

)
≥ 2

∥∥∥∥√Mα̃k
n · βn

∥∥∥∥
ℓ2

, (6.136)

the optimal γ can be obtained as:

γ̃k+1
n =

∥βn∥ℓ2√
Mα̃k

n

,∀i. (6.137)

Recall the expression for αk in (6.36)

αk ≜∇γv(γ, Π)⊤|γ=γk

=∇γ

(
− log |Θ∗|+ log |Γ|+ log |B⊤Γ−1B + X⊤Θ∗X|

)⊤
|γ=γk

=− diag
{
(Γk)−1

}
◦ diag

{
B(B⊤(Γk)−1B + X⊤Θ∗X)−1B⊤

}
◦ diag

{
(Γk)−1

}
+ diag

{
(Γk)−1

}
,

=
[

αk
1 · · · αk

N

]

6.8 Algorithms for Chapter 4 129

where Π−1 = Θ = Θ∗. Slightly different from the above expression, α̃k can be
derived in a decomposed way

α̃k =∇γ̃v(γ̃, γ̄k, Θ∗)⊤|γ̃=γ̃k

=∇γ̃

[
log |(Γ̃)−1 + D⊤(Γ̄k)−1D + X⊤Θ∗X|+ log |Γ̃|+ log |Γ̄k|

]
|γ̃=γ̃k

= diag
{(

(Γ̃k)−1 + D⊤(Γ̄k)−1D + X⊤Θ∗X
)−1

}
· diag

{
−(Γ̃k)−2

}
+ diag−1

{
Γ̃k
}

,

=
[

α̃k
11, . . . , α̃k

1M︸ ︷︷ ︸
M elements

. . . α̃k
N1, . . . , α̃k

NM︸ ︷︷ ︸
M elements

]
.

(6.138)

It is found that α̃k
n is a function of γ̃k

n. Therefore we need to estimate βk+1 first to
calculate γ̃k+1.

We then look at the hyperparameter Γ̄. Since

β⊤
n {Dn}⊤

i,: {Dn}i,: βn

γ̄ni

+ ᾱk
niγ̄ni ≥ 2

∣∣∣∣√ᾱk
ni · {Dn}i,: βn

∣∣∣∣ (6.139)

the optimal γ̄ can be obtained as

γ̄k+1
ni =

| {Dn}i,: βn|√
ᾱk

ni

,∀n = 1, . . . , N, i = 1, . . . , ℵ̄. (6.140)

And ᾱk is defined as

ᾱk =
[

ᾱk
11, . . . , ᾱk

1ℵ̄︸ ︷︷ ︸
ℵ̄ elements

. . . ᾱk
N1, . . . , ᾱk

N ℵ̄︸ ︷︷ ︸
ℵ̄ elements

]
. (6.141)

It should be noted that, we can obtain the following analytic form for the negative
gradient of v(γ) at γ using basic principles in convex analysis as (using chain rule):

ᾱk =∇γ̄v(γ̃k, γ̄, Θ∗)⊤|γ̄=γ̄k

=∇γ̄

[
log |(Γ̃k)−1 + D⊤Γ̄−1D + X⊤Θ∗X|+ log |Γ̃k|+ log |Γ̄|

]
|γ̄=γ̄k

= diag
{

D
(
(Γ̃k)−1 + D⊤(Γ̄k)−1D + X⊤Θ∗X

)−1
D⊤

}
· diag

{
−(Γ̄k)−2

}
+ diag−1

{
Γ̄k
}

=
[

ᾱk
11, . . . , ᾱk

1ℵ̄︸ ︷︷ ︸
ℵ̄ elements

. . . ᾱk
N1, . . . , ᾱk

N ℵ̄︸ ︷︷ ︸
ℵ̄ elements

]
.

(6.142)

It is found that ᾱk
ni is a function of γ̄k

ni. Therefore we need to estimate βk+1
n first to

calculate γ̄k+1
ni .

130 Algorithms for Likelihood in Gaussian

Two new variables are defined, i.e.,

w̃k
n ≜

√√√√ M∑
i=1

α̃k
ni, (6.143)

and

w̄k
ni ≜

√
ᾱk

ni. (6.144)

The pseudo code is summarised in Algorithm 6.

Algorithm 6 Reweighted Fused Group ℓ1 type algorithm for Gaussian likelihood

1: Select the candidate basis functions that will be used to construct the dictionary
matrix described;

2: Initialise w̃k
n = 1, w̄k

ni = 1, ∀i;
3: Fix/given the known inverse covariance matrix Π−1 = Θ = Θ∗;
4: Fix λ̃ = 1 and λ̄ = 1 or select λ̃ ∈ R+ and λ̄ ∈ R+ as trail and error which may be

empirically helpful;
5: for k = 1, . . . , kmax do
6: Solve the following weighted Fused Group Lasso type algorithm

βk+1 = argmin
β

(y−Xβ)⊤ Θ∗ (y−Xβ)

+ λ̃
N∑

n=1

∥∥∥w̃k
n · βn

∥∥∥
ℓ2

+ λ̄
N∑

n=1

ℵ̄∑
i=1

∥∥∥w̄k
ni · {Dn}i,: β̄n

∥∥∥
ℓ1

; (6.145)

7: γ̃k+1
n =

∥βk+1
n ∥

ℓ2
w̃k

n
, and γ̃k+1 =

[
γ̃k+1

1 , . . . , γ̃k+1
1︸ ︷︷ ︸

M elements

. . . γ̃k+1
N , . . . , γ̃k+1

N︸ ︷︷ ︸
M elements

]
;

8: γ̄k+1
ni = |{Dn}i,:β

k+1
n |

w̄k
ni

, ∀n, i, and γ̄k+1 =
[

γ̄k+1
11 , . . . , γ̄k+1

1ℵ̄︸ ︷︷ ︸
ℵ̄ elements

. . . γ̄k+1
N1 , . . . , γ̄k+1

N ℵ̄︸ ︷︷ ︸
ℵ̄ elements

]
;

9: Ck+1 =
(
(Γ̃k+1)−1 + D⊤(Γ̄k+1)−1D + X⊤Θ∗X

)−1
;

10: α̃k+1
n = − Ck+1

(γ̃k+1
n)2 + 1

γ̃k+1
n

;

11: w̃k+1
n =

√
M · α̃k+1

n ;

12: ᾱk+1
ni = −{Dn}i,:Ck+1{Dn}⊤

i,:
(γ̄k+1

n)2 + 1
γ̄k+1

n
;

13: w̄k+1
ni =

√
ᾱk+1

ni ;
14: if a stopping criterion is satisfied then
15: Break;
16: end if
17: end for

Chapter 7

Algorithms for Likelihood in
Exponential Family

132 Algorithms for Likelihood in Exponential Family

In this Chapter, we go beyond the nonlinear system where the basis functions
are assumed to be “linear in parameters” like Assumption 2. We will consider
the more general model class like Assumption 3. Furthermore, we will cover the
data likelihood beyond Gaussian distribution. Therefore, we move from linear
regression with structural sparsity to the more general nonlinear regression with
structural sparsity problems. Similar to Chapter 6, this chapter is organised as
follows. In Section 7.1, we introduce the data likelihood considered in this Chapter,
belonging to exponential family. In Section 7.2, the sparse prior and some variations
will be introduced as a controller for the structural sparsity. Next in Section 7.3,
the optimisation problem from a Bayesian perspective will be defined. Then in
Section 7.5, the general optimisation algorithms are proposed. In the last Section,
optimisation algorithms for two special prior will be proposed respectively.

7.1 Likelihood in Exponential Family

Assume the the distribution of data likelihood belongs to exponential family [153,
46, 105], i.e.,

p(y|β, θ) = h(β)a(θ) exp
(

S∑
s=1

ηs(θ) · Ts(β)
)

= a(θ) exp
(

S∑
s=1

ηs(θ) · Ts(β) + B(β)
)

≜ a(θ) exp (−E(β, θ))

(7.1)

where E(∗) is called the energy function.

The exponential families include many of the most commonly used probability
distributions. Among many others, the family includes the following: normal,
exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson,
Wishart, Inverse Wishart. A number of common distributions are exponential
families, but only when certain parameters are fixed and known. For example:
binomial (with fixed number of trials), multinomial (with fixed number of trials),
negative binomial (with fixed number of failures). Most of the distributions can be
covered by exponential family.

7.2 Sparse Prior 133

7.2 Sparse Prior

7.2.1 Generalised Sparse Prior

We still employ the sparse prior in super-Gaussian distribution in Section 6.2 of
Chapter 6, i.e.,

p(Bβ) =
ℵ∏

i=1
N (Bi,:β|0, γi)φ(γi)

= max
γ≻0
N (Bβ|0, Γ)φ(γ),

where
γ = [γ1, . . . , γℵ] ∈ Rℵ, Γ = diag [γ] .

In this Section, we vary the structure of B with easy identified name which will
be used throughout the thesis. The “generalised” sparse prior is named after the
“generalised lasso” in [190].

BIdentity First, we introduce the simplest case, identity matrix,

B = BIdentity ≜ I =


1

. . .

1

 ∈ Rℵ×ℵ. (7.2)

Like (4.12) in Section 4.4.2, we introduce BSwitch-I

B = BSwitch-I ≜


D1

. . .

DO

 ∈ Rℵ×N ,

Do ≜


1 −1

.

1 −1

 ∈ Rℵo×(ℵo+1),

ℵ =
O∑

o=1
ℵo, N =

O∑
o=1

(ℵo + 1), o = 1, . . . , O.

(7.3)

134 Algorithms for Likelihood in Exponential Family

Rather than diagonalise the D matrix, we introduce BSwitch-II

B = BSwitch-II ≜
[

D1 . . . DO

]
∈ Rℵ×N ,

Do ≜


1 −1

.

1 −1

 ∈ Rℵo×(ℵo+1),

ℵ = ℵo, N =
O∑

o=1
(ℵo + 1), o = 1, . . . , O.

(7.4)

Like the one introduced in (4.23) for trend filtering, we define BTrend-I

B = BTrend-I ≜


D1

. . .

DO

 ∈ Rℵ×N ,

Do ≜


1 −2 −1

.

1 −2 1

 ∈ Rℵo×(ℵo+2),

ℵ =
O∑

o=1
ℵo, N =

O∑
o=1

(ℵo + 2), o = 1, . . . , O.

(7.5)

Rather than diagonalise the D matrix, we introduce BTrend-II

B = BTrend-II ≜
[

D1 . . . DC

]
∈ Rℵ×N ,

Do ≜


1 −2 −1

.

1 −2 1

 ∈ Rℵo×(ℵo+2),

ℵ = ℵo, N =
O∑

o=1
(ℵo + 2), o = 1, . . . , O.

(7.6)

7.2.2 Group Sparse Prior

In this Section, suppose β is structured block-wise as

β =


β1
...

βO

 ∈ RN (7.7)

7.2 Sparse Prior 135

where βo ∈ RNo and N = ∑O
o=1 No. Furthermore, we introduce the B matrix as

BGroup

B = BGroup ≜


B1

. . .

BO

 ∈ Rℵ×N ,

Bo ∈ Rℵo×No ,ℵ =
O∑

o=1
ℵo, N =

O∑
o=1

No.

(7.8)

Then we have

Bβ = B


β1
...

βO

 =


B1β1

...
BOβO

 =



{B1}1,:β1
...

{B1}ℵ1,:β1
...

{BO}1,:βO

...
{BO}ℵO,:βO


. (7.9)

Next, we define the sparse prior. Fist, the hyperparameter vector is structured
block-wise as follows:

γ =
[

γ1, . . . , γ1︸ ︷︷ ︸
ℵ1 elements

. . . γO, . . . , γO︸ ︷︷ ︸
ℵO elements

]
,

Γ = diag [γ] .

(7.10)

and define the sparse prior as

p(Bβ) = N (Bβ|0, Γ)φ(Γ)

=
O∏

o=1
p(Boβo)

=
O∏

o=1
N (Boβo|0, γoIℵ)φ(γo)

=
O∏

o=1

ℵo∏
i=1
N ({Bo}i,:βo|0, γo)φ(γo).

(7.11)

The algorithm is introduced later in Section 7.5.1.

136 Algorithms for Likelihood in Exponential Family

7.2.3 Fused Sparse Prior

In this Section, suppose β is structured block-wise as follows:

β =


β̃1
...

β̃Õ

 =


β̄1
...

β̄Ō


where β̃Õ ∈ RÑõ and β̄Ō ∈ RN̄ō and N = ∑Õ

õ=1 Ñõ = ∑Ō
ō=1 N̄ō. It should be noted that

β̃õ may have different dimension with β̄Ō, i.e. Ñõ ̸= N̄ō. Furthermore, we introduce
the B matrix as BGroup, where the corresponding B matrix as BFused

B = BFused ≜
 B̃

B̄

 =



B̃1
. . .

B̃Õ

B̄1
. . .

B̄Ō


∈ Rℵ×N ,

B̃õ ∈ Rℵ̃õ×Ñõ , B̄ō ∈ Rℵ̄ō×N̄ō ,

ℵ =
Õ∑

õ=1
ℵ̃õ +

Ō∑
ō=1
ℵ̄ō, N =

Õ∑
õ=1

Ñõ =
Ō∑

ō=1
N̄ō.

(7.12)

Next, we define the sparse prior. First, the hyperparameter vector is structured
block-wise as follows:

γ̃ =
[

γ̃1, . . . , γ̃1︸ ︷︷ ︸
ℵ̃1 elements

. . . γ̃Õ, . . . , γ̃Õ︸ ︷︷ ︸
ℵ̃Õ elements

]
,

γ̄ =
[

γ̄11, . . . , γ̄1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . γ̄Ō1, . . . , γ̄Ōℵ̄Ō︸ ︷︷ ︸
ℵ̄Ō elements

]
,

Γ̃ = diag [γ̃] , Γ̄ = diag [γ̄] ,

Γ =
 Γ̃

Γ̄

 = diag [γ̃, γ̄] .

(7.13)

7.3 Optimisation Problem Definition 137

Then define the sparse prior as

p(Bβ) = N (Bβ|0, Γ)φ(Γ)
= N (B̃β|0, Γ̃)φ(Γ̃) · N (B̄β|0, Γ̄)φ(Γ̄)

=
Õ∏

õ=1
p(B̃õβ̃õ) ·

Ō∏
ō=1

p(B̄ōβ̄ō)

=
Õ∏

õ=1
N (B̃õβ̃õ|0, γ̃õIℵ̃)φ(γ̃õ) ·

Ō∏
ō=1
N (B̄ōβ̄ō|0, γ̄ōIℵ̄)φ(γ̄ō)

=
Õ∏

õ=1

ℵ̃õ∏
i=1
N ({B̃õ}i,:β̃õ|0, γ̃õ)φ(γ̃õ) ·

Ō∏
ō=1

ℵ̄ō∏
i=1
N ({B̄ō}i,:β̄ō|0, γ̄ō)φ(γ̄ō).

(7.14)

The algorithm is summarised in Section 7.5.2.

7.3 Optimisation Problem Definition

Once we introduce the likelihood in (7.1) and the variational prior in (6.9), we can
get the following approximated optimisation problem jointly on β, γ and Θ.

Proposition 10 Given the likelihood with exponential family distribution p(y|β, θ) =
a(θ) exp (−E(β, θ)) as in (7.1) and sparse prior with super Gaussian distribution p(Bβ) =
maxγ≻0N (Bβ|0, Γ)φ(γ) as in (6.9), the unknown parameter β, hyperparameter γ, and
parameter of the family θ can be approximately obtained by solving the following optimisation
problem

min
β,γ,θ
L(β, γ, θ) (7.15)

with

L(β, γ, θ) = β⊤H(β∗, θ)β + 2β⊤ [g(β∗, θ)−H(β∗, θ)β∗] + β⊤B⊤Γ−1Bβ

+ log |Γ|+ log |H(β∗, θ) + B⊤Γ−1B| − 2 log a(θ) · b(β∗, θ)− 2
ℵ∑

i=1
log φ(γi) (7.16)

where β∗ is arbitrary, and

g(β∗, θ) ≜ ∇E(β, θ)|β∗ , H(β∗, θ) ≜ ∇∇E(β, θ)|β∗ .

and
b(β∗, θ) ≜ exp

{
−
(1

2β∗⊤H(β∗, θ)β∗ − β∗⊤g(β∗, θ) + E(β∗, θ)
)}

.

138 Algorithms for Likelihood in Exponential Family

Proof Given the likelihood with exponential family distribution

p(y|β, θ) = a(θ) exp (−E(β, θ))

as in (7.1) and sparse prior with super Gaussian distribution

p(Bβ) = max
γ≻0
N (Bβ|0, Γ)φ(γ)

as in (6.9), we go straightly into the marginal likelihood

∫
p(y|β, θ)N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ

=a(θ)
∫

exp{−E(β, θ)}N (Bβ|0, Γ)
ℵ∏

i=1
φ(γi)dβ

=a(θ)
∫

exp
(

S∑
s=1

ηs(θ) · Ts(β) + B(β)
)
N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ.

(7.17)

Typically, this integral is intractable or has no analytical solution.

We first fix θ, the parameter of the family. For example, the mean and covariance can be
fixed if the family is Gaussian. Performing a Taylor series expansion around some point β∗,
E(β, θ) can be approximated as

E(β, θ) ≈ E(β∗, θ) + (β − β∗)⊤g(β∗, θ) + 1
2(β − β∗)⊤H(β∗, θ)(β − β∗) (7.18)

where g(·) is the gradient and H(·) is the Hessian of the energy function E

g(β∗, θ) ≜ ∇E(β, θ)|β∗ = −
(

S∑
s=1

ηs(θ) · ∇Ts(β)|β∗ +∇B(β)|β∗

)
, (7.19a)

H(β∗, θ) ≜ ∇∇E(β, θ)|β∗ = −
(

S∑
s=1

ηs(θ) · ∇∇Ts(β)|β∗ +∇∇B(β)|β∗

)
. (7.19b)

To derive the cost function in (7.16), we introduce the posterior mean and covariance

mβ = Σβ · [g(β∗, θ) + H(β∗, θ)β∗] , (7.20a)

Σβ =
[
H(β∗, θ) + B⊤Γ−1B

]−1
. (7.20b)

7.3 Optimisation Problem Definition 139

Then define the following quantities

b(β∗, θ) ≜ exp
{
−
(1

2β∗⊤H(β∗, θ)β∗ − β∗⊤g(β∗, θ) + E(β∗, θ)
)}

, (7.21a)

c(β∗, θ) ≜ exp
{1

2 ĝ(β∗, θ)⊤H(β∗, θ)ĝ(β∗, θ)
}

, (7.21b)

d(β∗, θ) ≜
√
|H(β∗, θ)|, (7.21c)

ĝ(β∗, θ) ≜ g(β∗, θ)−H(β∗, θ)β∗. (7.21d)

Now the approximated likelihood p(y|β, θ) is a exponential of quadratic, then Gaussian,

p(y|β, θ)
=a(θ) · exp{−E(β, θ)}

≈a(θ) · exp
{
−
(1

2(β − β∗)⊤H(β∗, θ)(β − β∗) + (β − β∗)⊤g(β∗, θ) + E(β∗, θ)
)}

=a(θ) · exp
{
−
(1

2β⊤H(β∗, θ)β + β⊤ [g(β∗, θ)−H(β∗, θ)β∗]
)}

· exp
{
−
(1

2β∗⊤H(β∗, θ)β∗ − β∗⊤g(β∗, θ) + E(β∗, θ)
)}

=a(θ) · b(β∗, θ) · exp
{
−
(1

2β⊤H(β∗, θ)β + β⊤ĝ(β∗, θ)
)}

· exp
{1

2 ĝ(β∗, θ)⊤H(β∗, θ)ĝ(β∗, θ)− 1
2 ĝ(β∗, θ)⊤H(β∗, θ)ĝ(β∗, θ)

}
=a(θ) · b(β∗, θ) · c(β∗, θ)

· exp
{
−
(1

2β⊤H(β∗, θ)β + β⊤ĝ(β∗, θ) + 1
2 ĝ(β∗, θ)⊤H(β∗, θ)ĝ(β∗, θ)

)}
=(2π)M/2a(θ)b(β∗, θ)c(β∗, θ)d(β∗, θ) · N (β|β̂∗, H−1(β∗, θ))
≜A(β∗, θ) · N (β|β̂∗, H−1(β∗, θ)),

(7.22)
where

A(β∗, θ) = (2π)M/2a(θ)b(β∗, θ)c(β∗, θ)d(β∗, θ),
β̂∗ = −H−1(β∗, θ)ĝ(β∗, θ) = β∗ −H−1(β∗, θ)g(β∗, θ).

140 Algorithms for Likelihood in Exponential Family

We can write the approximate marginal likelihood as

A(β∗, θ)
∫
N (β|β̂∗, H−1(β∗, θ)) · N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ

=a(θ) · b(β∗, θ) ·
∫

exp
{
−
(1

2β⊤H(β∗, θ)β + β⊤ĝ(β∗, θ)
)}
N (Bβ|0, Γ)

ℵ∏
i=1

φ(γi)dβ

=a(θ) · b(β∗, θ)
(2π)ℵ/2 |Γ|1/2

∫
exp{−Ê(β, θ)}dβ

ℵ∏
i=1

φ(γi),

(7.23)
where

Ê(β) = 1
2β⊤H(β∗, θ)β + β⊤ĝ(β∗, θ) + 1

2β⊤B⊤Γ−1Bβ. (7.24)

Equivalently, we get

Ê(β) = 1
2(β −mβ)⊤Σ−1

β (β −mβ) + Ê(y), (7.25)

where mβ and Σβ are given in (7.20). From (7.20a) and (7.20b), the data-dependent term
can be re-expressed as

Ê(y) =1
2m⊤

β H(β∗, θ)mβ + m⊤
β g(β∗, θ) + 1

2m⊤
β B⊤Γ−1Bmβ

= min
β

[1
2β⊤H(β∗, θ)β + β⊤ĝ(β∗, θ) + 1

2β⊤B⊤Γ−1Bβ
]

= min
β

[1
2β⊤H(β∗, θ)β + β⊤ (g(β∗, θ)−H(β∗, θ)β∗) + 1

2β⊤B⊤Γ−1Bβ
]

.

(7.26)

Using (7.25), we can evaluate the integral in (7.23) to obtain

∫
exp

{
−Ê(β)

}
dβ = exp

{
−Ê(y)

}
(2π)ℵ|Σβ|1/2. (7.27)

7.3 Optimisation Problem Definition 141

Applying a −2 log(·) transformation to (7.23), we have

− 2 log
[

a(θ) · b(β∗, θ)
(2π)ℵ/2 |Γ|1/2

∫
exp{−Ê(β)}dβ

ℵ∏
i=1

φ(γi)
]

∝− 2 log a(θ) · b(β∗, θ) + Ê(y)

+ log |Γ|+ log |H(β∗, θ) + B⊤Γ−1B| − 2
ℵ∑

i=1
log φ(γi)

∝β⊤H(β∗, θ)β + 2β⊤ĝ(β∗, θ) + β⊤B⊤Γ−1Bβ

+ log |Γ|+ log |H(β∗, θ) + B⊤Γ−1B|

− 2 log a(θ) · b(β∗, θ)− 2
ℵ∑

i=1
log φ(γi).

(7.28)

Therefore we get the following cost function to be minimised in (7.16) over β, γ, θ

L(β, γ, θ) = β⊤H(β∗, θ)β + 2β⊤ [g(β∗, θ)−H(β∗, θ)β∗] + β⊤B⊤Γ−1Bβ

+ log |Γ|+ log |H(β∗, θ) + B⊤Γ−1B| − 2 log a(θ) · b(β∗, θ)− 2
ℵ∑

i=1
log φ(γi).

It can be easily found that the first line of L is quadratic programming with ℓ2 regularizer.
The second line is all about the hyperparameter γ and the parameter of the exponential family
θ.

Once the estimate on β and γ are obtained, the cost function is alternatively optimised
over θ. The new estimated β can substitute β∗ and repeat the estimation iteratively.

■

Remark 18 Throughout the thesis, we assume H(β∗, θ) is invertible. Actually from the
derivation, we cannot guarantee that Hessian matrix H(β∗, θ) is positive semidefinite
therefore H(β∗, θ) maybe not invertible since its matrix property is determined by β∗.
Without exhaustive validation, we assume

H−1(β∗, θ) ≜ Ĥ(β∗, θ). (7.29)

Furthermore, since H(β∗, θ) is invertible, we let H(β∗, θ) decomposed as follows

H(β∗, θ) = X⊤(β∗, θ)X(β∗, θ). (7.30)

If X is identity matrix, then Π(β∗, θ) = Ĥ(β∗, θ).

142 Algorithms for Likelihood in Exponential Family

We note that in (7.19), β∗ may not be the mode (i.e., the lowest energy state),
which means the gradient term g may not be zero. Therefore the selection of β∗

1

remains to be problematic. We give the following Corollary to address this issue,
which is more general.

Corollary 2 Suppose

β∗ = argmin
β

E(β, θ) + β⊤B⊤Γ−1Bβ, (7.31)

we define a new cost function

L̂(β, γ, θ) ≜ E(β, θ) + β⊤B⊤Γ−1Bβ

+ log |Γ|+ log |H(β∗, θ) + B⊤Γ−1B| − 2 log a(θ) · b(β∗, θ)− 2
ℵ∑

i=1
log φ(γi). (7.32)

Instead of minimising L(β, γ, θ), we can solve the following optimisation problem to get
β, γ, θ

min
β,γ,θ
L̂(β, γ, θ).

Proof Since the likelihood is

p(y|β, θ) = a(θ) · exp{−E(β, θ)},

then
min

β
E(β, θ) + β⊤B⊤Γ−1Bβ

is exactly the regularised maximum likelihood estimation with ℓ2 type regulariser.
We look at the first part of L(β, γ, θ) in (7.16), and define them as

L0(β, γ, θ) ≜ β⊤H(β∗, θ)β + 2β⊤ [g(β∗, θ)−H(β∗, θ)β∗] + β⊤B⊤Γ−1Bβ,

then

min
β
L0(β, γ, θ)

= min
β

1
2(β − β∗)⊤H(β∗, θ)(β − β∗) + (β − β∗)⊤g(β∗, θ) + E(β∗, θ) + β⊤B⊤Γ−1Bβ

≈min
β

E(β, θ) + β⊤B⊤Γ−1Bβ

(7.33)

7.4 Optimisation Algorithm 143

where, given (7.19),
g(β, θ) = ∇E(β, θ)

H(β, θ) = ∇∇E(β, θ).
(7.34)

Such quadratic approximation to E(β, θ) + β⊤B⊤Γ−1Bβ is actually the same as the
approximation procedure in Trust-Region Methods where a region is defined around the
current iterate within which they trust the model to be an adequate representation of the
objective function [219, pp.65].

Similar to [219, eq.(4.3)], to obtain each step, we seek a solution of the subproblem at
iteration k

min
β

Ek(β, θ) + β⊤B⊤Γ−1Bβ

= min
β

1
2(β − βk)⊤H(βk, θ)(β − βk) + (β − βk)⊤g(βk, θ) + β⊤B⊤Γ−1Bβ

(7.35)

Suppose
β∗ = argmin

β
E(β, θ) + β⊤B⊤Γ−1Bβ,

then inject β∗ into minβ,γ,θ L(β, γ, θ), we can optimise (7.32) instead of (7.16), i.e.,
minβ,γ,θ L̂(β, γ, θ).

■

7.4 Optimisation Algorithm

In this Section, we propose iterative optimisation algorithms to estimate β, γ and θ

alternatively.

7.4.1 Optimisation for unknown parameter β and hyperparameter
γ

Convex-concave procedure

We first target for the estimation of unknown parameter β and hyperparameter γ.
We first initialise θ to some reasonable value or have already had a good estimate
of θ, denoted as θ∗. Then H(β∗, θ∗) is a known symmetric matrix, assuming to
be positive semidefinite. In the sequel, we show that the stated program can be
formulated as a convex-concave procedure (CCCP) for β and γ.

144 Algorithms for Likelihood in Exponential Family

Proposition 11 The following programme

min
β,γ
L(β, γ)

with the cost function defined as

L(β, γ) ≜ β⊤H(β∗, θ∗)β + 2β⊤ [g(β∗, θ∗)−H(β∗, θ∗)β∗] + β⊤B⊤Γ−1Bβ

+ log |Γ|+ log |B⊤Γ−1B + H(β∗, θ∗)| (7.36)

can be formulated as a convex-concave procedure (CCCP), where β∗ and θ∗ can be arbitrary
real vector.

Proof Fact on convexity: the function

u (β, Γ) =β⊤H(β∗, θ∗)β + 2β⊤ [g(β∗, θ∗)−H(β∗, θ∗)β∗] + β⊤B⊤Γ−1Bβ

∝(β − β∗)⊤H(β∗, θ∗)(β − β∗) + 2β⊤g(β∗, θ∗) + β⊤B⊤Γ−1Bβ
(7.37)

is convex jointly in β, Γ due to the fact that f(x, Y) = x⊤Y−1x is jointly convex in x, Y
(see, [28, p.76]). Hence u as a sum of convex functions is convex.

Fact on concavity: the function

v(Γ) = log |Γ|+ log |B⊤Γ−1B + H(β∗, θ∗)| (7.38)

is jointly concave in Γ, Π. We exploit the properties of the determinant of a matrix

|A22||A11 − A12A
−1
22 A21| =

∣∣∣∣∣∣
A11 A12

A21 A22

∣∣∣∣∣∣ = |A11||A22 − A21A
−1
11 A12|.

Then we have

v(Γ) = log |Γ|+ log |B⊤Γ−1B + H(β∗, θ∗)|
= log

(
|Γ||B⊤Γ−1B + H(β∗, θ∗)|

)
= log

∣∣∣∣∣∣
H(β∗, θ∗) B⊤

B −Γ

∣∣∣∣∣∣
= log

∣∣∣Γ + BH−1(β∗, θ∗)B⊤
∣∣∣+ log |H(β∗, θ∗)|

(7.39)

which is a log-determinant of an affine function of semidefinite matrices Π, Γ and hence
concave.

7.4 Optimisation Algorithm 145

Therefore, we can derive the iterative algorithm solving the CCCP. We have the following
iterative convex optimisation program by calculating the gradient of concave part.

βk+1 = argmin
β

u(β, γk, H(β∗, θ∗)), (7.40)

γk+1 = argmin
γ⪰0

u(βk, γ, H(β∗, θ∗)) +∇γv(γk, H(β∗, θ∗))⊤γ. (7.41)

■

Remark 19 Remark on the log of potential function in Proposition 11. Refer to the same
contents in Remark 13.

Derivation of iterative reweighted ℓ1 algorithm

Using basic principles in convex analysis, we then obtain the following analytic form
for the negative gradient of v(γ) at γ is (using chain rule):

αk ≜∇γv (γ, H(β∗, θ∗))⊤ |γ=γk

=∇γ

(
log |B⊤Γ−1B + H(β∗, θ∗)|+ log |Γ|

)⊤
|γ=γk

=− diag
{
(Γk)−1

}
◦ diag

{
B
(
B⊤(Γk)−1B + H(β∗, θ∗)

)−1
B⊤

}
◦ diag

{
(Γk)−1

}
+ diag

{
(Γk)−1

}
=
[

αk
1 · · · αk

N

]
(7.42)

where ◦ denote the Hadamard product operation (entrywise multiplication) and
diag denote the operation to get diagonal elements of matrix. Then equivalently, we
have

αk
i = −

Bi,:(B⊤(Γk)−1B + H(β∗, θ∗))−1B⊤
i,:

(γk
i)2 + 1

γk
i

. (7.43)

Therefore, the iterative procedures (7.40) and (7.41) for βk+1 and γk+1 can be formu-
lated as[

βk+1, γk+1
]

= argmin
γ⪰0,β

(β − β∗)⊤H(β∗, θ∗)(β − β∗) + 2β⊤g(β∗, θ∗) +
ℵ∑

i=1

(
β⊤B⊤

i,:Bi,:β

γi

+ αk
i γi

)

= argmin
β

β⊤H(β∗, θ∗)β + 2β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗) +
ℵ∑

i=1

(
β⊤B⊤

i,:Bi,:β

γi

+ αk
i γi

)
.

(7.44)

146 Algorithms for Likelihood in Exponential Family

Or in the compact form

[
βk+1, γk+1

]
= argmin

β
β⊤H(β∗, θ∗)β + 2β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗)

+ β⊤B⊤Γ−1B +
ℵ∑

i=1
αk

i γi.
(7.45)

Since
β⊤B⊤

i,:Bi,:β

γi

+ αk
i γi ≥ 2

∣∣∣∣√αk
i ·Bi,:β

∣∣∣∣ ,
the optimal γ can be obtained as:

γi = |Bi,:β|√
αk

i

, ∀i. (7.46)

From (7.42), it is found that αk
i is a function of γk

i . Therefore we need to estimate
βk+1 first to calculate γk+1. If we define

wk
i ≜

√
αk

i =

√√√√−Bi,:(B⊤(Γk)−1B + H(βk, θ∗))−1B⊤
i,:

(γk
i)2 + 1

γk
i

. (7.47)

βk+1 can be obtained as follows

βk+1 = argmin
β

1
2β⊤H(β∗, θ∗)β + β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗) +

ℵ∑
i=1
∥wk

i ·Bi,:β∥ℓ1 .

(7.48)
We can then inject this into (7.46), which yields

γk+1
i = |Bi,:β

k+1|
wk

i

,∀i. (7.49)

As we found in the expression for αi in (7.43), αk
i is function of γk, therefore γk+1

is function of γk and βk+1. We notice that the update for βk+1 is to use the lasso
or ℓ1-regularised regression type optimisation. The pseudo code is summarised in
Algorithm 7.

7.4 Optimisation Algorithm 147

Algorithm 7 Reweighted ℓ1 type algorithm for likelihood in exponential family of
distributions

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ)|; H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown w1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
5: for k = 1, . . . , kmax do
6:

βk+1 = argmin
β

E(β, θ∗) + λ
ℵ∑

i=1
∥wk

i ·Bi,:β∥ℓ1 ; (7.50)

7: γk+1
i =

∣∣∣∣Bi,:βk+1

wk
i

∣∣∣∣;
8: Ck+1 =

(
B⊤(Γk+1)−1B + H(βk+1, θ∗)

)−1
;

9: αi
k+1 = −Bi,:Ck+1B⊤

i,:
(γk+1

i)2 + 1
γk+1

i

;

10: wi
k+1 =

√
αi

k+1;
11: if a stopping criterion is satisfied then
12: Break.
13: end if
14: end for

148 Algorithms for Likelihood in Exponential Family

Derivation of iterative reweighted ℓ2 algorithm

In (7.44), instead of formulating a convex program for β and γ jointly, they are
optimised respectively.

βk+1 = argmin
β

(β − β∗)⊤H(β∗, θ∗)(β − β∗) + 2β⊤g(β∗, θ∗) +
ℵ∑

i=1

∥∥∥∥∥∥Bi,:β√
γk

i

∥∥∥∥∥∥
2

ℓ2

,

= argmin
β

1
2β⊤H(β∗, θ∗)β + β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗) + 1

2β⊤B⊤(Γk)−1Bβ

= argmin
β

E(β, θ∗) + 1
2β⊤B⊤(Γk)−1Bβ, (7.51)

γk+1
i = argmin

γi≥0

(βk+1)⊤B⊤
i,:Bi,:β

k+1

γi

+ αk
i γi,∀i. (7.52)

Once βk+1 is obtained, γk+1 has a closed form solution to (7.52), i.e.,

γk+1
i =

√√√√(βk+1)⊤B⊤
i,:Bi,:βk+1

αk
i

,

where αk
i is the same as (7.43)

αk
i = −

Bi,:(B⊤(Γk)−1B + H(βk+1, θ∗))−1B⊤
i,:

(γk
i)2 + 1

γk
i

.

But unlike (7.47), wk
i is defined as

wk
i ≜ 1√

γk
i

.

The pseudo code is summarised in Algorithm 8.

7.4 Optimisation Algorithm 149

Algorithm 8 Reweighted ℓ2 type algorithm for likelihood in exponential family of
distributions

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w1

i = 1, ∀i;
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 1, . . . , kmax do
7:

βk+1 = argmin
β

E(β, θ∗) + λ

2 β⊤B⊤(Γk)−1Bβ

= argmin
β

E(β, θ∗) + λ

2

ℵ∑
i=1
∥wk

i ·Bi,:β∥2
ℓ2 ;

(7.53)

8: Ck =
(
B⊤(Γk)−1B + H(βk+1, θ∗)

)−1
;

9: αk+1
i = −Bi,:CkB⊤

i,:
(γk

i)2 + 1
γk

i
;

10: γk+1
i = |Bi,:βk+1|√

αk+1
i

;

11: wk+1
i = 1√

γk+1
i

;

12: if a stopping criterion is satisfied then
13: Break.
14: end if
15: end for

7.4.2 Optimisation for the parameter of the exponential family θ

Once β and γ are given or estimated to be β∗ and γ∗, θ will be estimated, the cost
function is

L(β∗, γ∗, θ) = (β∗)⊤H(β∗, θ)(β∗)+2(β∗)⊤ [g(β∗, θ)−H(β∗, θ)β∗]+(β∗)⊤B⊤Γ∗−1Bβ∗

+ log |Γ∗|+ log |H(β∗, θ) + B⊤(Γ∗)−1B| − 2 log a(θ) · b(β∗, θ)− 2
ℵ∑

i=1
log φ(γi).

By dropping the constant, the estimate θ∗ can be obtained by minimising the new
cost function over θ

θ∗ = argmin
θ
L(β∗, γ∗, θ) (7.54)

150 Algorithms for Likelihood in Exponential Family

where

L(β∗, γ∗, θ) = β∗⊤ [2g(β∗, θ)−H(β∗, θ)β∗]
+ log |H(β∗, θ) + B⊤(Γ∗)−1B| − 2 log a(θ) · b(β∗, θ).

If the likelihood is Gaussian distributed, an easy recognised algorithm can be found
in Section 6.5.3.

Inspired by the implementation of Generalised Method of Moment (GMM)
[76, 77], a Nobel Prize in Economics winning work by Lars Hansen, we propose two
ways to optimise for θ.

The first one is inspired by two-step feasible GMM, where after the find estima-
tion of β and γ, i.e., at the iteration k = kend of the CCCP (7.40) and (7.41)

βk+1 = argmin
β

u(β, γk, H(β∗, θ∗)),

γk+1 = argmin
γ⪰0

u(βk, γ, H(β∗, θ∗)) +∇γv(γk, H(β∗, θ∗))⊤γ,

we have
θ∗ = argmin

θ
L(βkend , γkend , θ). (7.55)

The second one is inspired by iterated GMM, where at each iteration k of the
CCCP (7.40) and (7.41), we perform

βk+1 = argmin
β

u(β, γk, H(β∗, θ∗)),

γk+1 = argmin
γ⪰0

u(βk, γ, H(β∗, θ∗)) +∇γv(γk, H(β∗, θ∗))⊤γ,

θk+1 = argmin
θ
L(βk+1, γk+1, θ).

(7.56)

7.4.3 Implementations

Iterative Solvers

One of the main step in Algorithm 7 and 8 are the penalised MAP optimisation,
i.e., reweighted ℓ1 regression (7.50) and reweighted ℓ2 regression (7.53). This is more
general yet able to build upon the Alternating Direction Method of Multipliers (ADMM)
method [27]. When E is smooth, general iterative methods can be used to carry
out the β-minimization step. Of particular interest are methods that only require
the ability to compute ∇βE for a given β. Such methods can scale to relatively

7.4 Optimisation Algorithm 151

large problems. Examples include the standard gradient method, the (nonlinear)
conjugate gradient method, and the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm [29, 116]; see [219] for further details.

In this Thesis, we will derive corresponding ADMM algorithm for our method
which we use mostly in our experiments. Empirical study shows that ADMM
scheme is superior in the penalised MAP optimisation problem, both in convergence
speed and solution consistency.

Short-Cut to Computation of the Updated Weight w

The other main step in Algorithm 7 and 8 is the computation to invert the covariance
matrix C =

(
B⊤Γ−1B + H(β, θ∗)

)−1
which typically requires O(N3) computations

andO(N2) memory. We next show that the computation of inverting a matrix can be
a by-product of the iterative solvers, namely, Quasi-Newton method such as L-BFGS.
Unfortunately, this only applies to reweighted ℓ2 regression (7.53), but not reweighted ℓ1

regression (7.50) yet.

In (7.53) of Algorithm 8, the following minimisation problem is typically solved
by iterative solvers.

βk+1 = argmin
β

E(β, θ∗) + 1
2β⊤B⊤(Γk)−1Bβ.

We denote
fk(β) ≜ E(β, θ∗) + 1

2β⊤B⊤(Γk)−1Bβ. (7.57)

And we assume min fk(β) is solved by Newton method where the gradient and
Hessian information of fk(β) is needed. Typically, the symbolic expression of
gradient ∂fk(β)

∂β
and Hessian ∂2fk(β)

∂β∂β⊤ will be cached at the beginning.

It should be noted that H(β) may not be unnecessary if Quasi-Newton method
method is employed since the Hessian information can be evaluated/approximated
by the gradient. We change the iteration index k (see the 4th line of Algorithm 8) as
epoch, while the iteration index is denoted as τ for solving (7.53) by using iterative

152 Algorithms for Likelihood in Exponential Family

solvers like L-BFGS. Recall the expression of (7.51) in the reverse order, we can write

βepoch+1

= argmin
β

f(β)

= argmin
β

E(β, θ∗) + 1
2β⊤B⊤(Γepoch)−1Bβ

= argmin
β

1
2β⊤H(β∗, θ∗)β + β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗) + 1

2β⊤B⊤(Γepoch)−1Bβ

= argmin
β

1
2β⊤

(
H(β∗, θ∗) + B⊤(Γepoch)−1B

)
β + β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗) .

(7.58)
Next, we consider the maximum iteration of τ as {τ}max which can be fixed a priori
or reach to some number when a stopping criterion is satisfied. Let

βepoch+1 = βepoch+1,1 = βepoch,{τ}max . (7.59)

Then we have

βepoch,τ+1

= argmin
β

f epoch(β)

= argmin
β

E(β, θ∗) + 1
2β⊤B⊤(Γepoch)−1Bβ

= argmin
β

1
2β⊤H(βepoch,τ , θ∗)β + β⊤

(
g(βepoch,τ , θ∗)−H(βepoch,τ , θ∗)βepoch,τ

)
+ 1

2β⊤B⊤(Γepoch)−1Bβ

= argmin
β

1
2β⊤

(
H(βepoch,τ , θ∗) + B⊤(Γepoch)−1B

)
β

+ β⊤
(
g(βepoch,τ , θ∗)−H(βepoch,τ , θ∗)βepoch,τ

)
.

(7.60)

As in Newton’s method, one uses a second order approximation to find the
minimum of a function f(β). The Taylor series of f(β) around an iterate is:

f(βτ + ∆β) ≈ f(βτ) +∇f(βτ)T ∆β + 1
2∆βT H̃ ∆β,

where (∇f) is the gradient and H̃ an approximation to the Hessian matrix. It
also should be noted that H̃ is for f rather than H for E . The gradient of this

7.4 Optimisation Algorithm 153

approximation (with respect to ∆β) is

∇f(βτ + ∆β) ≈ ∇f(βτ) + H̃ ∆β

and setting this gradient to zero (which is the objective of optimisation) provides the
Newton step:

∆β = −H̃−1∇f(βτ),

The Hessian approximation H̃ is chosen to satisfy

∇f(βτ + ∆β) = ∇f(βτ) + H̃ ∆β,

which is called the “secant equation” (the Taylor series of the gradient itself). In
more than one dimension H̃ is underdetermined. In one dimension, solving for
H̃ and applying the Newton’s step with the updated value is equivalent to the
secant method. The various quasi-Newton methods differ in their choice of the
solution to the secant equation (in one dimension, all the variants are equivalent).
Most methods (but with exceptions, such as Broyden’s method) seek a symmetric
solution (H̃⊤ = H̃); furthermore, the variants listed below can be motivated by
finding an update H̃τ+1 that is as close as possible to H̃τ in some norm; that is,
H̃τ+1 = argminH∥H̃− H̃τ∥V where V is some positive definite matrix that defines
the norm. An approximate initial value of H̃0 = I ∗ β is often sufficient to achieve
rapid convergence. Note that H̃0 should be positive definite. The unknown βτ

is updated applying the Newton’s step calculated using the current approximate
Hessian matrix H̃τ

• ∆βτ = −ατ (H̃τ)−1∇f(βτ), with α chosen to satisfy the Wolfe conditions;

• βτ+1 = βτ + ∆βτ ;

• The gradient computed at the new point ∇f(βτ+1), and

yτ = ∇f(βτ+1)−∇f(βτ),

154 Algorithms for Likelihood in Exponential Family

is used to update the approximate Hessian H̃τ+1, or directly its inverse (H̃τ+1)−1

using the Sherman-Morrison formula. For example, using L-BFGS,

H̃τ+1 = H̃τ + yτ (yτ)⊤

(yτ)⊤∆βτ
− H̃τ ∆βτ (H̃τ ∆βτ)⊤

∆(βτ)⊤H̃τ ∆βτ
, (7.61a)

(H̃τ+1)−1 =
(

I− ∆βτ (yτ)⊤

(yτ)⊤∆βτ

)
H̃τ

(
I− yτ ∆(βτ)⊤

(yτ)⊤∆βτ

)
+ ∆βτ ∆(βτ)⊤

(yτ)⊤ ∆βτ
; (7.61b)

• A key property of the BFGS and DFP updates is that if H̃τ is positive definite
and ατ is chosen to satisfy the Wolfe conditions then H̃τ+1 is also positive
definite.

In Algorithm 9, we modify Algorithm 8 with Quasi-Newton method solving
the minimisation problem (7.53). It should be noted that, if L-BFGS algorithm is
employed, the Hessian matrix needs not to be cached a priori but approximated
by gradient, i.e., approximating H̃τ+1 or directly (H̃τ+1)−1 by ∇f(βepoch,τ+1) and
∇f(βepoch,τ).

Semidefinite Programming for Arbitrary Γ

To this end, the covariance matrix for the super Gaussian distribution Γ, i.e., the
hyperparameter, is diagonal. The underlying implication of “diagonal” is the inde-
pendence of γi therefore Bi,:β are independent with each other, ∀i. In other words,
all the parameters of a model are irrelevant. Apparently, it should be careful to
make such assumption. For example, in financial models, some parameters are
co-moving together; in gene networks, some parameters are changing in response to
certain common external perturbation. In this Section, we will show that the neat
and simple form with ℓ1− or ℓ2− regularisation disappears when the covariance
matrix Γ is not diagonal, yet semidefinite positive, as an illustration, Γ may look like γ1 γ1γ2

γ1γ2 γ2

.

We first vectorise all the parameters γi into a single vector γ. From (7.30) in
Remark 18, we know

H(β∗, θ) = X⊤(β∗, θ)X(β∗, θ).

7.4 Optimisation Algorithm 155

Algorithm 9 Algorithm 8 with Quasi-Newton Update

1: Cache symbolically the likelihood, loss function and its gradient over β

Likelihood: p(y|β, θ) = a(θ) · exp{−E(β, θ)}
Loss function: f(β, γ, θ) = E(β, θ) + λβ⊤B⊤Γ−1Bβ

Gradient function: g̃(β, γ, θ) = ∇βf(β, γ, θ)

where we fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically
helpful;

2: Initialise the unknown hyperparameter γ, i.e., γ1, as an arbitrary positive vector
such as unit vector;

3: Initialise the unknown parameter β, i.e., β1,1, as an arbitrary real vector such as
zero vector;

4: Fix/given the known parameter of the exponential family θ = θ∗;
5: Initialise the Hessian matrix H̃1,1 as an arbitrary positive definite matrix such as

identity or be calculated explicitly with∇∇βf(β, γ, θ) given β1,1 and θ∗;
6: for epoch = 1, . . . , epochmax do
7: for τ = 1, . . . , τmax do
8: Choose αepoch,τ for the next step to via line search under Wolfe conditions;
9: ∆βepoch,τ = −αepoch,τ (H̃epoch,τ)−1g̃(βepoch,τ , γepoch, θ∗);

10: βepoch,τ+1 = βepoch,τ + ∆βepoch,τ ;
11: Compute the gradient at the new point g̃(βepoch,τ+1, γepoch, θ∗);
12: yepoch,τ = g̃(βepoch,τ+1, γepoch, θ∗)− g̃(βepoch,τ , γepoch, θ∗);
13: Approximate H̃epoch,τ+1 using yepoch,τ , ∆βepoch,τ , H̃epoch,τ like (7.61a);
14: Approximate (H̃epoch,τ+1)−1 using yepoch,τ , ∆βepoch,τ , H̃epoch,τ like (7.61b);
15: end for
16: Cepoch =

(
H̃(βepoch,τmax , θ∗)

)−1
;

17: α
epoch+1
i = −Bi,:CepochB⊤

i,:

(γepoch
i)2 + 1

γ
epoch
i

;

18: βepoch+1 = βepoch,τmax ;

19: γ
epoch+1
i = |Bi,:βepoch+1|√

α
epoch+1
i

, Γkepoch+1 = diag(γepoch+1);

20: if a stopping criterion is satisfied then
21: Break;
22: end if
23: end for

156 Algorithms for Likelihood in Exponential Family

We can rewrite the iteration (7.45) in the following compact form

[
βk+1, γk+1

]
= argmin

β,γ
β⊤H(β∗, θ∗)β + 2β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗)

+ β⊤B⊤Γ−1B−∇γv(γk, θ∗)⊤γ

= argmin
β,γ

β⊤X⊤(β∗, θ)X(β∗, θ)β + 2β⊤ (g(β∗, θ∗)−H(β∗, θ∗)β∗)

+ β⊤B⊤Γ−1B−∇γv(γk, θ∗)⊤γ.

This is equivalent to the following SDP by using the standard procedure in [28]

min
z,β,γ

z−∇γv(γk, θ∗)⊤γ

subject to


z (X(β∗, θ)β)⊤ (Bβ)⊤

X(β∗, θ)β I 0
Bβ 0 Γ

 ⪰ 0

γ ⪰ 0.

The cost of solving this SDP is at least (ℵ + M)3, where ℵ is the number rows and
M is typically the number of examples. Therefore, solving this SDP is too costly
for all but problems with a small number of variables. This means that the number
of samples, the dimension of the system, and potential number of the unknown
parameters etc., can not be too large simultaneously. In this SDP formulation, Γ
is closely related to the sparse multiple kernel presented in [35]. Certain choice of
kernels may introduce some good properties or help reduce algorithmic complexity.

7.5 Optimisation Algorithm with Structural Sparsity

7.5.1 Algorithm for Group Spare Prior in Section 7.2.2

Consider the group spare prior defined in Section 7.2.2. For o = 1, . . . , O, we have

ℵo∑
i=1

(
β⊤

o {Bo}⊤
i,:{Bo}i,:βo

γo

+ αk
oiγo

)
≥ 2

∥∥∥∥∥∥
√√√√ ℵo∑

i=1
αk

oi ·Boβo

∥∥∥∥∥∥
ℓ2

, (7.62)

the optimal γ can be obtained as:

γk+1
o =

∥Boβo∥ℓ2√∑ℵo
i=1 αk

oi

,∀i. (7.63)

7.5 Optimisation Algorithm with Structural Sparsity 157

It should be noted that αk is still the same as in (7.42), but structured as

αk =
[

αk
11, . . . , αk

1ℵ1︸ ︷︷ ︸
ℵ1 elements

. . . αk
O1, . . . , αk

OℵO︸ ︷︷ ︸
ℵO elements

]
. (7.64)

It is found that αk
o is a function of γk

o . Therefore we need to estimate βk+1 first to
calculate γk+1. If we define

wk
o ≜

√√√√ ℵo∑
i=1

αk
oi, . (7.65)

The pseudo code is summarised in Algorithm 10.

Algorithm 10 Reweighted Generalised Group ℓ1 type algorithm for likelihood in
exponential family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ)|; H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w1

i = 1, ∀i;
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 1, . . . , kmax do
7: Solve the following Group Lasso type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ
O∑

o=1

∥∥∥wk
o ·Boβo

∥∥∥
ℓ2

; (7.66)

8: γk+1
o =

∥Boβk+1
o ∥

ℓ2
wk

o
, and γk+1 =

[
γk+1

1 , . . . , γk+1
1︸ ︷︷ ︸

ℵ1 elements

. . . γk+1
O , . . . , γk+1

O︸ ︷︷ ︸
ℵO elements

]
;

9:
10: Ck+1 =

(
B⊤(Γk+1)−1B + H(βk+1, θ∗)

)−1
;

11: αk+1
oi = −{Bo}i,:Ck+1{Bo}⊤

i,:
(γk+1

o)2 + 1
γk+1

o
,∀i ;

12: wk+1
o =

√∑ℵo
i=1 αk+1

oi ,∀o;
13: if a stopping criterion is satisfied then
14: Break;
15: end if
16: end for

Similarly, we can derive the reweighted generalised group ℓ2 type algorithm. The
pseudo code is summarised in Algorithm 11.

158 Algorithms for Likelihood in Exponential Family

Algorithm 11 Reweighted Generalised Group ℓ2 type algorithm for likelihood in
exponential family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ)|; H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w1

i = 1, ∀i;
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 1, . . . , kmax do
7: Solve the following Group ℓ2 type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ
O∑

o=1

∥∥∥wk
o ·Boβo

∥∥∥2

ℓ2
; (7.67)

8: Ck =
(
B⊤(Γk)−1B + H(βk+1, θ∗)

)−1
;

9: αk+1
oi = −{Bo}i,:Ck{Bo}⊤

i,:
(γk

o)2 + 1
γk

o
, ;

10: γk+1
o = ∥Boβo∥ℓ2√∑ℵo

i=1 αk+1
oi

, and γk+1 =
[

γk+1
1 , . . . , γk+1

1︸ ︷︷ ︸
ℵ1 elements

. . . γk+1
O , . . . , γk+1

O︸ ︷︷ ︸
ℵO elements

]
;

11: wk+1
o = 1√

γk+1
o

;

12: if a stopping criterion is satisfied then
13: Break;
14: end if
15: end for

7.5 Optimisation Algorithm with Structural Sparsity 159

For a special case, where all the B matrix are identity matrix. This is similar to
the Group Lasso

B =


I1

. . .

IO

 ∈ Rℵ×ℵ.

Io ∈ Rℵo×ℵo ,ℵ =
O∑

o=1
ℵo, o = 1, . . . , O.

(7.68)

Then for o = 1, . . . , O, we have

ℵo∑
i=1

(
β⊤

o βo

γo

+ αk
oγo

)
≥ 2

∥∥∥∥√ℵoαk
o · βo

∥∥∥∥
ℓ2

. (7.69)

the optimal γ can be obtained as:

γk+1
o =

∥Boβo∥ℓ2√
ℵoαk

o

,∀o. (7.70)

It should be noted that αk is still the same as in (7.42), but structured as

αk =
[

αk
1, . . . , αk

1︸ ︷︷ ︸
ℵ1 elements

. . . αk
O, . . . , αk

O︸ ︷︷ ︸
ℵO elements

]
. (7.71)

It is found that αk
o is a function of γk

o . Therefore we need to estimate βk+1 first to
calculate γk+1. If we define

wk
o ≜

√
ℵoαk

o , (7.72)

The pseudo code is summarised in Algorithm 12.

Similarly, we can derive the reweighted Group ℓ2 type algorithm. The pseudo
code is summarised in Algorithm 13.

7.5.2 Algorithm for Fused Sparse Prior in Section 7.2.3

We first look at the hyperparameter Γ̃. Since For õ = 1, . . . , Õ, since

ℵ̃õ∑
i=1

(
β̃⊤

õ {B̃õ}⊤
i,:{B̃õ}i,:βõ

γ̃õ

+ α̃k
õ γ̃õ

)
≥ 2

∥∥∥∥√ℵ̃õα̃k
õ · B̃õβõ

∥∥∥∥
ℓ2

, (7.75)

160 Algorithms for Likelihood in Exponential Family

Algorithm 12 Reweighted Group ℓ1 type algorithm for likelihood in exponential
family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w1

i = 1, ∀i;
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 1, . . . , kmax do
7: Solve the following Group Lasso type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ
O∑

o=1

∥∥∥wk
o · βo

∥∥∥
ℓ2

; (7.73)

8: γk+1
o =

∥βk+1
o ∥

ℓ2
wk

o
, and γk+1 =

[
γk+1

1 , . . . , γk+1
1︸ ︷︷ ︸

ℵ1 elements

. . . γk+1
O , . . . , γk+1

O︸ ︷︷ ︸
ℵO elements

]
;

9: Ck+1 =
(
(Γk+1)−1 + H(βk+1, θ∗)

)−1
;

10: αk+1
o = − Ck+1

(γk+1
o)2 + 1

γk+1
o

;

11: wk+1
o =

√
ℵoαk+1

o ;
12: if a stopping criterion is satisfied then
13: Break;
14: end if
15: end for

7.5 Optimisation Algorithm with Structural Sparsity 161

Algorithm 13 Reweighted Group ℓ2 type algorithm for likelihood in exponential
family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w1

i = 1, ∀i;
5: Fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically helpful;
6: for k = 1, . . . , kmax do
7: Solve the following Group ℓ2 type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ
O∑

o=1

∥∥∥wk
o · βo

∥∥∥2

ℓ2
; (7.74)

8: Ck =
(
(Γk)−1 + H(βk+1, θ∗)

)−1
;

9: αk+1
o = − Ck

(γk
o)2 + 1

γk
o

;

10: γk+1
o =

∥βk+1
o ∥

ℓ2√
ℵoαk+1

o

, and γk+1 =
[

γk+1
1 , . . . , γk+1

1︸ ︷︷ ︸
ℵ1 elements

. . . γk+1
O , . . . , γk+1

O︸ ︷︷ ︸
ℵO elements

]
;

11: wk+1
o = 1√

γk+1
o

;

12: if a stopping criterion is satisfied then
13: Break;
14: end if
15: end for

162 Algorithms for Likelihood in Exponential Family

the optimal γ can be obtained as:

γ̃k+1
õ =

∥∥∥B̃õβ̃õ

∥∥∥
ℓ2√

ℵ̃õα̃k
õ

,∀i. (7.76)

It should be noted that α̃k is still the same as in (7.42), but structured as

α̃k =
[

α̃k
11, . . . , α̃k

1ℵ̃1︸ ︷︷ ︸
ℵ̃1 elements

. . . α̃k
Õ1, . . . , α̃k

Õℵ̃Õ︸ ︷︷ ︸
ℵ̃Õ elements

]
. (7.77)

Recall the expression for αk in (7.42)

∇γv (γ, H(β∗, θ∗))⊤ |γ=γk

=∇γ

(
log |B⊤Γ−1B + H(β∗, θ∗)|+ log |Γ|

)⊤
|γ=γk

=− diag
{
(Γk)−1

}
◦ diag

{
B
(
B⊤(Γk)−1B + H(β∗, θ∗)

)−1
B⊤

}
◦ diag

{
(Γk)−1

}
+ diag

{
(Γk)−1

}
.

Slightly different from the above expression, α̃k can be derived in a decomposed
way

α̃k =∇γ̃v(γ̃, γ̄k, H(β∗, θ∗))⊤|γ̃=γ̃k

=∇γ̃

[
log |B̃⊤(Γ̃)−1B̃ + B̄⊤(Γ̄k)−1B̄ + H(βk+1, θ∗)|+ log |Γ̃|+ log |Γ̄k|

]
|γ̃=γ̃k

= diag{B̃
[
(B̃⊤Γ̃k)−1B̃ + B̄⊤(Γ̄k)−1B̄ + H(βk+1, θ∗)

]−1
B̃⊤} · diag{−(Γ̃k)−2}

+ diag−1{Γ̃k}

=
[

α̃k
11, . . . , α̃k

1ℵ̃1︸ ︷︷ ︸
ℵ̃1 elements

. . . α̃k
Õ1, . . . , α̃k

Õℵ̃Õ︸ ︷︷ ︸
ℵ̃Õ elements

]
.

(7.78)
It is found that α̃k

õ is a function of γ̃k
õ . Therefore we need to estimate βk+1 first to

calculate γ̃k+1.

We then look at the hyperparameter Γ̄. For ō = 1, . . . , Ō, since

β̄⊤
ō {B̄ō}⊤

i,:{B̄ō}i,:β̄ō

γ̄ōi

+ ᾱk
ōiγ̄ōi ≥ 2

∣∣∣∣√ᾱk
ōi · {B̄ō}i,:β̄ō

∣∣∣∣ (7.79)

the optimal γ̄ can be obtained as:

γ̄k+1
ōi = |{B̄ō}i,:β̄ō|√

ᾱk
ōi

,∀ō = 1, . . . , Ō, i = 1, . . . , ℵ̄ō. (7.80)

7.5 Optimisation Algorithm with Structural Sparsity 163

And ᾱk is defined as

ᾱk =
[

ᾱk
11, . . . , ᾱk

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . ᾱk
Ō1, . . . , ᾱk

Ōℵ̄ō︸ ︷︷ ︸
ℵ̄Ō elements

]
. (7.81)

It should be noted that, we can obtain the following analytic form for the negative
gradient of v(γ) at γ using basic principles in convex analysis as (using chain rule):

ᾱk =∇γ̄v(γ̃k, γ̄, H(β∗, θ∗))⊤|γ̄=γ̄k

=∇γ̄

[
log |B̃⊤(Γ̃k)−1B̃ + B̄⊤Γ̄−1B̄ + H(βk+1, θ∗)|+ log |B̃⊤Γ̃kB̃|+ log |Γ̄|

]
|γ̄=γ̄k

= diag{B̄
[
B̃⊤(Γ̃k)−1B̃ + B̄⊤(Γ̄k)−1B̄ + H(βk+1, θ∗)

]−1
B̄⊤} · diag{−(Γ̄k)−2}

+ diag−1{Γ̄k}
=
[

ᾱk
11, . . . , ᾱk

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . ᾱk
Ō1, . . . , ᾱk

Ōℵ̄ō︸ ︷︷ ︸
ℵ̄Ō elements

]
.

(7.82)
It is found that ᾱk

ōi is a function of γ̄k
ōi. Therefore we need to estimate βk+1

ō first to
calculate γ̄k+1

ōi .

Two new variables related to weights are defined:

w̃k
õ ≜

√√√√√ ℵ̃õ∑
i=1

α̃k
õi, (7.83)

and

w̄k
ōi ≜

√
ᾱk

ōi, (7.84)

The pseudo code is summarised in Algorithm 14.

Similarly, we can derive the reweighted generalised fused group ℓ2 type algorithm.
The pseudo code is summarised in Algorithm 15.

Similarly, let B be an identity matrix


B̃1

. . .

B̃Õ

 =


I1

. . .

IÕ

 .

The pseudo code is summarised in Algorithm 16.

164 Algorithms for Likelihood in Exponential Family

Algorithm 14 Reweighted Generalised Fused Group ℓ1 type algorithm for likelihood
in exponential family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w̃1

õ = 1, w̄1
ōi = 1, ∀i;

5: Fix λ̃ = 1 and λ̄ = 1 or select λ̃ ∈ R+ and λ̄ ∈ R+ as trail and error which may be
empirically helpful;

6: for k = 1, . . . , kmax do
7: Solve the following Fused Group Lasso type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ̃
Õ∑

õ=1

∥∥∥w̃k
õ · B̃õβ̃õ

∥∥∥
ℓ2

+ λ̄
Ō∑

ō=1

ℵ̄ō∑
i=1

∥∥∥w̄k
ōi · {B̄ō}i,:β̄ō

∥∥∥
ℓ1

;

(7.85)

8: γ̃k+1
õ =

∥B̃õβ̃k+1
õ ∥ℓ2

w̃k
õ

, and γ̃k+1 =
[

γ̃k+1
1 , . . . , γ̃k+1

1︸ ︷︷ ︸
ℵ̃1 elements

. . . γ̃k+1
Õ

, . . . , γ̃k+1
Õ︸ ︷︷ ︸

ℵ̃Õ elements

]
;

9: γ̄k+1
ōi = |{B̄ō}i,:β̄

k+1
ō |

w̄k
ōi

, and γ̄k+1 =
[

γ̄k+1
11 , . . . , γ̄k+1

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . γ̄k+1
Ō1 , . . . , γ̄k+1

Ōℵ̄Ō︸ ︷︷ ︸
ℵ̄Ō elements

]
;

10: Ck+1 =
(
B̃⊤(Γ̃k+1)−1B̃ + B̄⊤(Γ̄k+1)−1B̄ + H(βk+1, θ∗)

)−1
;

11: α̃k+1
õi = −{B̃õ}i,:Ck+1{B̃õ}⊤

i,:
(γ̃k+1

õ)2 + 1
γ̃k+1

õ

;

12: w̃k+1
õ =

√∑ℵ̃õ
i=1 α̃k+1

õi , ∀õ = 1, . . . , Õ;

13: ᾱk+1
ōi = −{B̄ō}i,:Ck+1{B̄ō}⊤

i,:
(γ̄k+1

õ)2 + 1
γ̄k+1

ō

;

14: w̄k+1
ōi =

√
ᾱk+1

ōi , ∀ō = 1, . . . , Ō, i = 1, . . . , ℵ̄ō;
15: if a stopping criterion is satisfied then
16: Break;
17: end if
18: end for

7.5 Optimisation Algorithm with Structural Sparsity 165

Algorithm 15 Reweighted Generalised Fused Group ℓ2 type algorithm for likelihood
in exponential family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w̃1

õ = 1, w̄1
ōi = 1, ∀i;

5: Fix λ̃ = 1 and λ̄ = 1 or select λ̃ ∈ R+ and λ̄ ∈ R+ as trail and error which may be
empirically helpful;

6: for k = 1, . . . , kmax do
7: Solve the following Fused Group ℓ2 type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ̃
Õ∑

õ=1

∥∥∥w̃k
õ · B̃õβ̃õ

∥∥∥2

ℓ2
+ λ̄

Ō∑
ō=1

ℵ̄ō∑
i=1

∥∥∥w̄k
ōi · {B̄ō}i,:β̄ō

∥∥∥2

ℓ2
;

(7.86)
8: Ck =

(
B̃⊤(Γ̃k)−1B̃ + B̄⊤(Γ̄k)−1B̄ + H(βk+1, θ∗)

)−1
;

9: α̃k+1
õi = −{B̃õ}i,:Ck{B̃õ}⊤

i,:
(γ̃k

õ)2 + 1
γ̃k

õ
;

10: γ̃k+1
õ =

∥B̃õβ̃k+1
õ ∥ℓ2√∑ℵ̃õ

i=1 α̃k+1
õi

, and γ̃k+1 =
[

γ̃k+1
1 , . . . , γ̃k+1

1︸ ︷︷ ︸
ℵ̃1 elements

. . . γ̃k+1
Õ

, . . . , γ̃k+1
Õ︸ ︷︷ ︸

ℵ̃Õ elements

]
;

11: w̃k+1
õ = 1√

γ̃k+1
õ

, ∀õ = 1, . . . , Õ;

12: ᾱk+1
ōi = −{B̄ō}i,:Ck{B̄ō}⊤

i,:
(γ̄k

õ)2 + 1
γ̄k

ō
;

13: γ̄k+1
ōi = |{B̄ō}i,:β̄

k+1
ō |√

ᾱk+1
ōi

, and γ̄k+1 =
[

γ̄k+1
11 , . . . , γ̄k+1

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . γ̄k+1
Ō1 , . . . , γ̄k+1

Ōℵ̄Ō︸ ︷︷ ︸
ℵ̄Ō elements

]
;

14: w̄k+1
ōi = 1√

γ̄k+1
ōi

, ∀ō = 1, . . . , Ō, i = 1, . . . , ℵ̄ō;

15: if a stopping criterion is satisfied then
16: Break;
17: end if
18: end for

166 Algorithms for Likelihood in Exponential Family

Algorithm 16 Reweighted Fused Group ℓ1 type algorithm for likelihood in exponen-
tial family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w̃1

õ = 1, w̄1
ōi = 1, ∀i;

5: Fix λ̃ = 1 and λ̄ = 1 or select λ̃ ∈ R+ and λ̄ ∈ R+ as trail and error which may be
empirically helpful;

6: for k = 1, . . . , kmax do
7: Solve the following Fused Group Lasso type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ̃
Õ∑

õ=1

∥∥∥w̃k
õ · β̃õ

∥∥∥
ℓ2

+ λ̄
Ō∑

ō=1

ℵ̄ō∑
i=1

∥∥∥w̄k
ōi · {B̄ō}i,:β̄ō

∥∥∥
ℓ1

;

(7.87)

8: γ̃k+1
õ =

∥β̃k+1
õ ∥ℓ2
w̃k

õ
, and γ̃k+1 =

[
γ̃k+1

1 , . . . , γ̃k+1
1︸ ︷︷ ︸

ℵ̃1 elements

. . . γ̃k+1
Õ

, . . . , γ̃k+1
Õ︸ ︷︷ ︸

ℵ̃Õ elements

]
;

9: γ̄k+1
ōi = |{B̄ō}i,:β̄

k+1
ō |

w̄k
ōi

, and γ̄k+1 =
[

γ̄k+1
11 , . . . , γ̄k+1

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . γ̄k+1
Ō1 , . . . , γ̄k+1

Ōℵ̄Ō︸ ︷︷ ︸
ℵ̄Ō elements

]
;

10: Ck+1 =
(
(Γ̃k+1)−1 + B̄⊤(Γ̄k+1)−1B̄ + H(βk+1, θ∗)

)−1
;

11: α̃k+1
õ = − Ck+1

(γ̃k+1
õ)2 + 1

γ̃k+1
õ

;

12: w̃k+1
õ =

√
ℵ̃õ · α̃k+1

õ ;

13: ᾱk+1
ōi = −{B̄ō}i,:Ck+1{B̄ō}⊤

i,:
(γ̄k+1

ō)2 + 1
γ̄k+1

ō

;

14: w̄k+1
ōi =

√
ᾱk+1

ōi ;
15: if a stopping criterion is satisfied then
16: Break;
17: end if
18: end for

7.5 Optimisation Algorithm with Structural Sparsity 167

Algorithm 17 Reweighted Fused Group ℓ2 type algorithm for likelihood in exponen-
tial family

1: Symbolic cache likelihood, gradient and Hessian expressions

p(y|β, θ) = a(θ) · exp{−E(β, θ)}; g(β, θ) = ∇E(β, θ); H(β, θ) = ∇∇E(β, θ);

2: Initialise the unknown hyperparameter γ1 as a unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise w̃1

õ = 1, w̄1
ōi = 1, ∀i;

5: Fix λ̃ = 1 and λ̄ = 1 or select λ̃ ∈ R+ and λ̄ ∈ R+ as trail and error which may be
empirically helpful;

6: for k = 1, . . . , kmax do
7: Solve the following Fused Group ℓ2 type algorithm

βk+1 = argmin
β

E(β, θ∗) + λ̃
Õ∑

õ=1

∥∥∥w̃k
õ · β̃õ

∥∥∥2

ℓ2
+ λ̄

Ō∑
ō=1

ℵ̄ō∑
i=1

∥∥∥w̄k
ōi · {B̄ō}i,:β̄ō

∥∥∥2

ℓ2
;

(7.88)
8: Ck =

(
(Γ̃k)−1 + B̄⊤(Γ̄k)−1B̄ + H(βk+1, θ∗)

)−1
;

9: α̃k+1
õ = − Ck

(γ̃k
õ)2 + 1

γ̃k
õ

;

10: γ̃k+1
õ =

∥β̃k+1
õ ∥ℓ2√
ℵ̃õ·α̃k+1

õ

, and γ̃k+1 =
[

γ̃k+1
1 , . . . , γ̃k+1

1︸ ︷︷ ︸
ℵ̃1 elements

. . . γ̃k+1
Õ

, . . . , γ̃k+1
Õ︸ ︷︷ ︸

ℵ̃Õ elements

]
;

11: w̃k+1
õ = 1√

γ̃k+1
õ

;

12: ᾱk+1
ōi = −{B̄ō}i,:Ck{B̄ō}⊤

i,:
(γ̄k

ō)2 + 1
γ̄k

ō
;

13: γ̄k+1
ōi = |{B̄ō}i,:β̄

k+1
ō |√

ᾱk+1
ōi

, and γ̄k+1 =
[

γ̄k+1
11 , . . . , γ̄k+1

1ℵ̄1︸ ︷︷ ︸
ℵ̄1 elements

. . . γ̄k+1
Ō1 , . . . , γ̄k+1

Ōℵ̄Ō︸ ︷︷ ︸
ℵ̄Ō elements

]
;

14: w̄k+1
ōi = 1√

γ̄k+1
ōi

;

15: if a stopping criterion is satisfied then
16: Break;
17: end if
18: end for

168 Algorithms for Likelihood in Exponential Family

Similarly, we can derive the reweighted fused group ℓ2 type algorithm. The pseudo
code is summarised in Algorithm 17.

Remark 20 (Remark on Algorithms in Section 7.5) If the Algorithms in Section needs
to be efficiently implemented like the one in Algorithm 9. The Maximum a Posterior
procedure, a.k.a.,the argmin step, in the ℓ2 type Algorithms, can be similarly substituted by
the “inner for loop” procedures in Algorithm 9. More specifically, these Algorithms include
Algorithm 11, 13, 15, 17.

Remark 21 (Remark on the extension to train deep neural networks) A possible and
intuitive algorithm extension to train deep neural networks with structural sparsity can be
found later in Section 14.1.2 and 14.1.4 of Chapter 14.

Chapter 8

Algorithms for Online Model
Selection

170 Algorithms for Online Model Selection

Our method allows inference of model structures that can be decomposed as
linear combinations of nonlinear functions chosen from a dictionary set. We note,
however, that the identification of parameters nonlinearly embedded in these func-
tions is a non-trivial task. As we saw in the previous section, a naive approach
consists in augmenting the set of dictionary functions with various candidate non-
linearities for which nonlinearly embedded parameters are given specific values.
We would then rely on the approximation of the true nonlinearities as a linear com-
bination of these dictionary functions, i.e. on estimating the true nonlinearity as an
“interpolation” from discretely valued candidate nonlinearities.

On the other hand, filtering methods have been widely used to estimate parame-
ters for a given (nonlinear) parametric structure [209]. The main issue with filtering
methods is that they require a priori knowledge of such model structures and cannot
easily be used to infer model structures in other ways than by trying individual
structures and comparing them using model selection criteria. Typically, this process
has a very high computational cost.

In the following section, we show how our model structure inference (described
in Algorithm 5) can be used to identify nonlinear terms that can benefit from further
refinement using filtering approaches. For example, if the right hand side of one
of the equations in the identified model was to contain a linear combination of the
form 0.2684

1+x
+ 0.7292

1+x3 , a new parametric structure could be created where this term
is replaced by Vmax

K+xh . This new parametric model structure can then serve as the
starting point for filtering methods, which are then used to estimate the values of the
parameters in the new parametric structure. Furthermore, the parameters identified
using our model structure inference method can be used as initial guesses or priors
for the filtering methods.

8.1 Extended Kalman Filter

As mentioned above, our model structure inference method can be used to identify
nonlinear terms that can benefit from further refinement in their structure. Let the
new parametric structure obtained through such refinement be given by:


xt+1 = g(xt, ut, γ) + ξt,

zt = xt + ηt,

x1 = g0,

(8.1)

8.1 Extended Kalman Filter 171

where g0 is the initial guess of the state vector x.

Extended or unscented Kalman filtering are celebrated methods used to identify
both the state variables in x and the parameters in γ of a given parametric model
structure such as the one provided in (8.1). Simultaneous identification of state
variables and parameters can be done using a “state extension” approach where
constant parameters such as those contained in the model parameter vector γ are
considered as additional state variables with a rate of change equal to zero. In this
way, constant parameters are treated as constant functions of time as opposed to
constant numbers [200].

The parameters identified using our model structure inference method (see
Algorithm 5) can be used as initial guesses or priors for the parameters γ.

Filtering can be made more tractable by considering that the unknown parame-
ters γ evolve according to a Brownian motion. For this, we introduce a new variable
ϕk and consider the following linear process model:

ϕt+1

γt+1

 =
 I 0
∆τ I

 ϕt

γt

+ ϱt , (8.2)

where ϱt has covariance:

Qϱ := σ2

 ∆τ ∆τ 2/2
∆τ 2/2 ∆τ 3/3

 ,

where σ2 must be chosen a priori. We further define the augmented state parametric
structure as:

x̄t ≜


xt

ϕt

γt

 , ḡ(x̄t, ut) ≜


g(xt, ut, γt)

ϕt

γt + ∆tϕt

 ,

ξ̄t ≜
 ξt

ϱt

 , ḡ0 ≜


g0

ϕ0

γ0

 ,

(8.3)

where ḡ0 is the initial state estimate.

We can now write the full augmented dynamic model as


x̄t+1 = ḡ(x̄t, ut) + ξ̄t,

zt = [Inx , 0]x̄t + ηt,

x̄1 = ḡ0.

(8.4)

172 Algorithms for Online Model Selection

The new process noise ξ̄t has positive definite covariance matrix

Q̄t =
 Qt 0

0 Qϱ

 .

Using such a state extension approach, the problem of parameter estimation is
converted into a problem of state estimation, for which the goal is to estimate the
extended state x̄ from measurements of the output z. More precisely, we are trying
to determine the initial conditions ḡ0, which, when used to initialise the system (8.1),
generates the observed output z.

8.2 Algorithm combining model structure identification
and model refinement

In this section we present Algorithm 18, which constitutes the main algorithm
combining 1) our model structure identification method (Algorithm 5) with 2) model
refinement of model structures using filtering. Model structure identification is done
off-line and thus requires batched data (historical sensor measurements) which were
collected a priori. Once a ‘rough’ model structure is obtained, model refinement can
be performed on-line by feeding streaming data (sensor measurements that arrive in
real-time).

In Algorithm 18, we define a trial as the application of the model structure
identification procedure described in Algorithm 5 using a given set of dictionary
functions and a given regularisation parameter λ.

8.2 Algorithm combining model structure identification and model refinement 173

Algorithm 18 Online Model Selection Algorithm

1: IDENTIFICATION:
Require: Batched Data

2: procedure IDENTIFICATION(S trials)
3: for s = 1, . . . , S do
4: Choose a regularisation parameter λs;
5: Choose a set of dictionary functions;
6: Using the set of dictionary functions, construct Xs from batched data;
7: Ms = IDENTIFICATION(λs, Xs); % Apply Algorithm 5to get a model
Ms;

8: end for
9: Pick the top Ŝ rankedMs models based on a certain model selection criterion.

10: end procedure
11: Update:
12: procedure UPDATE(Ŝ trials)
13: Update candidate functions as stated in the introduction to Section 8.1;
14: end procedure
15: FILTERING:
Require: Streaming Data
16: procedure FILTERING(Ŝ trials)
17: while New data zt is available do
18: for s = 1, . . . , Ŝ do
19: Mnew

s = FILTERING(zt); % Apply Filtering techniques to refine
modelMs

20: end for
21: end while
22: if Not convergent then goto IDENTIFICATION
23: end if
24: end procedure

Chapter 9

Algorithms for Fault Diagnosis

176 Algorithms for Fault Diagnosis

9.1 Fault Diagnosis Problem Formulation

We slightly change the notation of the linear regression model (4.28) in Chapter 4.5.2.
we can write (4.28) into a vector form:

ei(t + 1) = fi(x(t))βtrue
i + ηi(t), (9.1)

with

fi(x(t)) = [fi1(x(t)), . . . , fiN(x(t))] ∈ RN , (9.2)

βtrue
i = [βi1, . . . , βiN]⊤ ∈ RN . (9.3)

As stated in Definition 2, if there are no faults occurring in the system, the
dynamics of the system will evolve according to (9.1). The e

¯
xpected output for the

next sampling time is defined to be

e
[e]
i (t + 1) = fi(x(t))βtrue

i . (9.4)

From (9.1) and (9.4), it is easy to show that ei(t + 1) − e
[e]
i (t + 1) is a stochastic

variable with zero mean and variance σ2. If there are faults occurring in the system,
the corresponding weights will change from βtrue

i to βfault
i . Similar to the definition

of βtrue
i , βfault

i = [β[f]
i1 , . . . , β

[f]
iN]⊤. We thus have:

e
[f]
i (t + 1) = fi(x(t))βfault

i + ηi(t), (9.5)

where e
[f]
i is the output when there are f

¯
aults.

From (9.4) and (9.5), it is easy to find that e
[f]
i (t + 1) − e

[e]
i (t + 1) is a stochastic

variable with mean: fi(x(t))(βfault
i − βtrue

i)
variance: σ2

Denoting
yi = e

[f]
i − e

[e]
i , βi = βfault

i − βtrue
i ,

we have:
yi(t + 1) = fi(x(t))βi + ηi(t). (9.6)

9.2 Fault Detection and Isolation Algorithm 177

Remark 22 We formulate the faults identification problem as a linear regression problem.
The dependent variable e

[f]
i (t + 1)− e

[e]
i (t + 1) is the difference between the expected output

and the faulty output; the unknown variable we want to estimate is the difference between
the faulty transmission weights and the true transmission weights.

9.2 Fault Detection and Isolation Algorithm

There are three problems of interest based on the formulation in (9.6): a) detection
of a fault; b) isolation of a fault, i.e. determination of the type, location and time of
occurrence of a fault; and c) identification of the size and time-varying behaviour of
a fault. In the noiseless case, when there are no faults, ∀i, yi and βi are both equal
to zero. On the other hand, when there are faults, certain yi are nonzero. So the
faults can be detected by identifying the entries yi that are nonzero. However, in the
noisy case, even when there are no faults, yi is nonzero most of the time since it is a
stochastic variable with zero mean. This can be interpreted in a probabilistic way by
Chebyshev’s Inequality:

p(|ei(t + 1)− e
[e]
i (t + 1)| ≥ lσ = σ∗) ≤ 1

l2

where l ∈ R+. According to this inequality, when there are no faults, the deviation
between true and expected outputs, i.e. |ei(t + 1) − e

[e]
i (t + 1)| cannot be much

greater than zero with high probability. On the other hand, when there is a fault, the
deviation between faulty and expected outputs, i.e. |e[f]

i (t + 1)− e
[e]
i (t + 1)| should

be much greater than zero with high probability.

From an isolation point of view and Chebyshev’s inequality, when |e[f]
i (t + 1)−

e
[e]
i (t + 1)| is much greater than σ, the fault can be isolated with high probability (e.g.

if the threshold is set to lσ = 10σ, then the probability is 99%).

9.3 Fault Identification Algorithm

If at time t1 faults have been detected and isolated, the remaining task is to perform
fault identification, i.e. to identify the location of the faults or equivalently to find the
nonzero entries in βi. Assuming that M successive data points, including the initial

178 Algorithms for Fault Diagnosis

data point at t1, are sampled and defining

yi ≜ [yi(t1), . . . , yi(M)]⊤ ∈ RM ,

Xi ≜


fi(x(t1))

...
fi(x(M))

 ∈ RM×N ,

ηi ≜ [ηi(t1), . . . , ηi(M)]⊤ ∈ RM ,

(9.7)

we can write N independent equations of the form:

yi = Xiβi + ηi, i = 1, . . . , N. (9.8)

Based on the formulation in (9.8), our goal is to find βi given the output data
stored in yi. y is the difference between the faulty measurements and the expected
measurements, or namely, the error measurements; and β is the difference between
the faulty parameters and the true parameters, or namely, the faults. We address
this linear regression problem under the following assumption.

Assumption 10 A maximum of S system parameters are faulty, i.e. βi has at most S

non-zero entries. In other words, βi is S-sparse or mathematically, ∥βi∥ ≤ S. The constant
S is assumed unknown to the system administrator.

On the other-hand, the size of y equals to the number of samples needed to
identify the location of the faults after the they occur. From a practical viewpoint,
the number of samples should be as small as possible. However, standard least
square approaches to (9.7) cannot meet this goal as they require at least 2N samples.
Moreover, the solution to the standard least square problem is generically dense
(hence, violating Assumption 10) and cannot be used to identify which transmission
lines are likely to be faulty by identification of the nonzero entries of the estimated
βfault − βtrue.

Based on Algorithm 3, we can summarise the fault diagnosis algorithm in Algo-
rithm 19.

9.3 Fault Identification Algorithm 179

Algorithm 19 Fault Diagnosis Algorithm

1: Set a threshold σ∗ as indicated in Section 9.2, e.g. σ∗ = 10× σ;
2: for k = 0, . . . , T do
3: % T is an integer indicating the number of diagnosis rounds;
4: for i = 1, . . . , N do
5: Collect the output data ei(t + 1) in (9.1);
6: Calculate the expected output e

[e]
i (t + 1) in (9.4);

7: if |ei(t + 1)− e
[e+]
i (t + 1)| > σ∗ then

8: Fault is detected for βi; % {fault detection procedure}
9: Compute yi(t + 1) in (9.6);

10: if |yi(t + 1)| > σ∗ then
11: Isolate fault i; % {fault isolation procedure}
12: end if
13: end if
14: Set M ← k;
15: Apply Algorithms propose in Chapter 6.6 to identify the faults β̂i; % {fault

identification procedure}
16: end for
17: if ∀i, ∥β̂i∥0 converge to some constant then
18: Break;
19: end if
20: end for
21: An estimate for the faults β̂ in (9.8), i = 1, . . . , N .

Part III

Applications

Chapter 10

Biochemical Reaction Network
Identification

184 Biochemical Reaction Network Identification

10.1 Identification from Single Time Series Data

In this example, we consider a classical dynamical system in systems/synthetic
biology, the repressilator, which we use to illustrate the reconstruction problem
at hand. The repressilator is a synthetic three-gene regulatory network where the
dynamics of mRNAs and proteins follow an oscillatory behaviour [55]. A discrete-
time mathematical description of the repressilator, which includes both transcription
and translation dynamics, is given by the following set of discrete-time equations:

x1(t + 1)− x1(t)
∆t

= −γ1x1(t) + α1

(1 + xn1
6 (t)) + ξ1(t),

x2(t + 1)− x2(t)
∆t

= −γ2x2(t) + α2

(1 + xn2
4 (t)) + ξ2(t),

x3(t + 1)− x3(t)
∆t

= −γ3x3(t) + α3

(1 + xn3
5 (t)) + ξ3(t),

x4(t + 1)− x4(t)
∆t

= −γ4x4(t) + β1x1(k) + ξ4(t),

x5(t + 1)− x5(t)
∆t

= −γ5x5(k) + β2x2 + ξ5(t),

x6(t + 1)− x6(t)
∆t

= −γ6x6(t) + β3x3(t) + ξ6(t).

Here, x1, x2, x3 (resp. x4, x5, x6) denote the concentrations of the mRNA transcripts
(resp. proteins) of genes 1, 2, and 3, respectively. ξi, ∀i are i.i.d. Gaussian noise.
α1, α2, α3 denote the maximum promoter strength for their corresponding gene,
γ1, γ2, γ3 denote the mRNA degradation rates, γ4, γ5, γ6 denote the protein degra-
dation rates, β1, β2, β3 denote the protein production rates, and n1, n2, n3 the Hill
coefficients. The set of equations in (10.1) corresponds to a topology where gene 1 is
repressed by gene 2, gene 2 is repressed by gene 3, and gene 3 is repressed by gene 1.
Take gene 1 for example. The hill coefficient n1 will typically have a value within a
range from 1 to 4 due to biochemical constraints. The core question here is: how can
we determine the topology and kinetic parameters of the set of equations in (10.1)
from time series data of x1, . . . , x6?

Note that we do not assume a priori knowledge of the form of the nonlinear
functions appearing on the right-hand side of the equations in (10.1), e.g., whether
the degradation obeys fi rst-order or enzymatic catalysed dynamics or whether the
proteins are repressors or activators. It should also be noted that many linear and
nonlinear functions can be used to describe the dynamics of GRNs in terms of bio-
chemical kinetic laws, e.g., first-order functions f([S]) = [S], mass action functions

10.1 Identification from Single Time Series Data 185

f([S1] , [S2]) = [S1] · [S2], Michaelis-Menten functions f([S]) = Vmax [S] /(KM + [S]),
or Hill functions f([S]) = Vmax [S]n /(Kn

M + [S]n). These kinetic laws typical of bio-
chemistry and GRN models will aid in the definition of the dictionary function
matrix. Next we show how the network construction problem of the repressilator
model in (10.1) can be formulated in a linear regression form.

We construct a candidate dictionary matrix X, by selecting as candidate basis
functions, nonlinear functions typically used to represent terms appearing in bio-
chemical kinetic laws of GRN models. As a proof of concept, we only consider
Hill functions as potential nonlinear candidate functions. The set of Hill functions
with Hill coefficient h, both in activating and repressing from, for each of the 6 state
variables are:

hillh(t) ≜
[

1
1 + xh

1(t) , . . . ,
1

1 + xh
6(t) ,

xh
1(t)

1 + xh
1(t) , . . . ,

xh
6(t)

1 + xh
6(t)

]
1×12

, (10.1)

where h represents the Hill coefficient. In what follows we consider that the Hill
coefficient can take any of the following integer values: 1, 2, 3 or 4. Since there are 6
state variables, we can construct the dictionary matrix X with 6 (dictionary functions
for linear terms) +(4 ∗ 12) (dictionary functions for Hill functions) = 54 columns.

X =


x1(0) . . . x6(0) hill1(0) . . . hill4(0)

...
...

...
...

x1(M − 1) . . . x6(M − 1) hill1(M − 1) . . . hill4(M − 1)

 ∈ RM×(6+48).

(10.2)
Then the output can be defined as

yi ≜
[

xi(1)− xi(0)
∆t

, . . . ,
xi(M)− xi(M − 1)

∆t

]⊤

∈ RM×1, i = 1, . . . , 6.

186 Biochemical Reaction Network Identification

Considering the dictionary matrix X given in (10.2), the corresponding target βi for
the “correct” model in (10.1) should be:

βtrue = [β1, β2, β3, β4, β5, β6] =

−γ1(= −0.3) 0 0 β1(= 1.4) 0 0
0 −γ2(= −0.4) 0 0 β2(= 1.5) 0
0 0 −γ3(= −0.5) 0 0 β3(= 1.6)
0 0 0 −γ4(= −0.2) 0 0
0 0 0 0 −γ5(= −0.4) 0
0 0 0 0 0 −γ6(= −0.6)

047×1 045×1 046×1

α1(= 4) α2(= 3) α3(= 5) 048×1 048×1 048×1

00×1 02×1 01×1



.

(10.3)

with values in brackets indicating the correct parameter values.

To generate the time-series data, we took ‘measurements’ every 1 unit between
t = 0 and t = 50 (arbitrary units) from random initial conditions which are drawn
from a standard uniform distribution on the open interval (0, 1). Thus a total of 51
measurements for each state are collected (including the initial value). It should be
noted that the number of rows is less than the number of columns in the dictionary
matrix.

We here investigate the performance of various algorithms including ours (Algo-
rithm 1 in the main text) for different signal-to-noise ratios of the data. We define
the signal-to-noise ratio (SNR) as

SNR(dB) ≜ 20 log10
∥Xβtrue∥2

∥Ξ∥2
.

We considered SNRs ranging from 0 dB to 25 dB for each generated weight. To
compare the reconstruction accuracy of the various algorithms considered, we use
the root of normalised mean square error (RNMSE) as a performance index, i.e.

∥βestimate − βtrue∥2

∥βtrue∥2
(10.4)

For each SNR, we performed 200 independent experiments and calculated the
average RNMSE for each SNR over these 200 experiments. In each “experiment”,
we simulated the repressilator model with random initial conditions drawn from
a standard uniform distribution on the open interval (0, 1). The parameters were

10.1 Identification from Single Time Series Data 187

drawn from a standard uniform distribution with the true values βtrue in (10.3) taken
as the mean and variations around the mean values no more than 10% of the true
values. In MATLAB, one can use βtrue.*(0.9 + 0.2*rand(54,6)) to generate
the corresponding parameter matrix for each experiment.

Based on these settings, we compared Algorithm 4 with nine other state-of-
the-art sparse linear regression algorithms available at [54]. [54] provides access
to a free MATLAB software package managed by David Donoho and his team and
contains various tools for finding sparse solutions of linear systems, least-squares
with sparsity, various pursuit algorithms, and more. We compare our identifica-
tion algorithm with nine other state-of-the-art sparse linear regression algorithms
available at [54], namely, BP (Basis Pursuit), IRWLS (Iteratively ReWeighted Least
Squares), ISTBlock (Iterative Soft Thresholding, block variant with least squares pro-
jection), LARS (Least-Angle RegreSsion), MP (Matching Pursuit), OMP (Orthogonal
Matching Pursuit), PFP (Polytope Faces Pursuit), Stepwise (Forward Stepwise), and
StOMP (Stagewise Orthogonal Matching Pursuit).

In Fig. 10.1, we plot, for various SNRs, the average RNMSE obtained using our
centralised algorithm (both implementation using the generic parser CVX and cen-
tralised ADMM implementations) and other algorithms in [54]. In Fig. 10.2, we plot,
for the various SNRs considered, the average computational running time required
by our algorithm and the other algorithms from [54]. During this comparison, the
inputs for the algorithms listed in these algorithms are always the same, i.e. the
dictionary matrix X and the data contained in y. The initialisation and pre-specified
parameters for these algorithms were set to their default values provided in [54].
Interested readers can download the package from [54] and reproduce the results
presented here under the default settings of the solvers therein.

It should be noted that the dictionary matrices in all the experiments are rank
deficient, i.e. neither column rank nor row rank are full. As a consequence, both
the MP and OMP algorithm fail to converge or yield results with extremely large
RNMSE. As these two algorithms cannot satisfactorily be used, they have been
removed from the comparison results presented in Fig. 10.1 and Fig. 10.2. It can be
seen from Fig. 10.1 that our algorithm outperforms all the other algorithms in [54] in
terms of RNMSE.

188 Biochemical Reaction Network Identification

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

RNMSE Comparision: Genetic Repressilator in Example 2

SNR (dB)

R
N

M
S

E

Our Algorithm
BP
IRWLS
ISTBlock
LARS
PFP
Stepwise
StOMP

Fig. 10.1 Root of Normalised Mean Square Error ∥βestimate − βtrue∥2/∥βtrue∥2 averaged
over 200 independent experiments for the signal-to-noise ratios 0 dB, 5 dB, 10 dB, 15
dB, 20 dB, and 25 dB.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

10
2

Computational Running Time Comparision: Genetic Repressilator in Example 2

SNR (dB)

C
om

pu
ta

tio
na

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Our Algorithm
BP
IRWLS
ISTBlock
LARS
PFP
Stepwise
StOMP

Fig. 10.2 Computational running time averaged over 200 independent experiments
for the signal-to-noise ratios 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and 25 dB.

10.2 Identificaton from Multiple Heterogeneous Time Series Datasets 189

10.2 Identificaton from Multiple Heterogeneous Time
Series Datasets

In this Section, we use numerical simulations to show the effectiveness of the pro-
posed algorithm. To compare the identification accuracy of the various algorithms
considered, we use the root of normalised mean square error (RNMSE) as a perfor-
mance index, i.e.

RNMSE = ∥βestimate − βtrue∥2

∥βtrue∥2
.

Several factors affect the RNMSE, e.g. number of experiments C, measurement
noise intensity, dynamic noise intensity, length of single time series data M , number
of candidate basis functions N . For brevity of exposition, we only show results
pertaining to change of RNMSE over number of experiment C and length of single
time series for one experiment, all in the noiseless case. More results related to
other factors that may affect RNMSE will be shown in a future journal publication
presenting these results in more details.

As an illustrative example, we consider a model of an eight species generalised
repressilator [181], which is a system where each of the species represses another
species in a ring topology. The corresponding dynamic equations are as follows:

ẋ1t = p11

pp13
12 + xp13

8t

+ p14 − p15x1t,

ẋit = pi1

ppi3
i2 + xpi3

i−1,t

+ pi4 − pi5xit, ∀i = 2, . . . 8,
(10.5)

where pij , i = 1, . . . , 8, j = 1, . . . , 5. We assume the mean value for these parameters
across different species and experiments are p̄i1 = 40, p̄i2 = 1, p̄i3 = 3, p̄i4 = 0.5, p̄i5 =
1, ∀i. We simulate the ODEs in Eq. (10.5) to generate the time series data. In each
“experiment” or simulation of Eq. (10.5), the initial conditions are randomly drawn
from a standard uniform distribution on the open interval (0, 1). The parameters
in each experiment vary no more than 20% of the mean values. In MATLAB, one
can use p̄ij*(0.8 + 0.4*rand(1)) to generate the corresponding parameters for
each experiment.

The numerical simulation procedure can be summarised as follows:

1. The deterministic system of ODEs (10.5) is solved numerically with an adaptive
fourth-order Runge-Kutta method;

190 Biochemical Reaction Network Identification

X =


x1(1) . . . x8(1) hill(x1(1), 1, 0, 3) . . . hill(x8(1), 1, 3, 3) 1

...
...

...
...

...
x1(M) . . . x8(M) hill(x1(M), 1, 0, 3) . . . hill(x8(M), 1, 3, 3) 1

 ∈ RM×25.

(10.7)

2. As explained in (5.14), Gaussian measurement noise with variance σ2 is added
to the corresponding time-series data obtained in the previous step1;

3. The data is re-sampled with uniform intervals2;

4. The local polynomial regression framework in [48] is applied to estimate the
first derivative;

5. A dictionary matrix is constructed;

6. Algorithm in Chapter 3 is used to identify the model.

The candidate dictionary matrix X in step 5) above is constructed by selecting
as candidate nonlinear basis functions typically used to represent terms appearing
in ODE models of Gene Regulatory Networks. As a proof of concept, we only
consider Hill functions as potential nonlinear candidate functions. The set of Hill
functions with Hill coefficient h, both in activating and repressing form, for the ith

state variables at time instant tk are:

hill(xi(t), K, hnum, hden) ≜ xhnum
i (t)

Khden + xhden
i (t)

(10.6)

where hnum and hden represent the Hill coefficients. When hnum = 0, the Hill function
has a repression form, whereas an activation form is obtained for hnum = hden ̸= 0.

In our identification experiment, we assume hnum, hden and K to be known. We
are interested in identifying the regulation type (linear or Hill type, repression or
activation) and the corresponding parameters pi1, the degradation rate constant
pi4 and the basal expression rate pi5, ∀i. Since there are 8 state variables, we can
construct the dictionary matrix X with 8 (basis functions for linear terms) +(2 ∗ 8)
(basis functions for Hill functions, both repression and activation form) +1 (constant
unit vector) = 25 columns. The corresponding matrix X is given in Eq. (10.10)

1In the example presented here, we consider the noiseless case corresponding to σ = 0.
2In this example, interval length is set to 1.

10.3 Online Model Selection 191

For a fixed number of experiments C and length of single time series M , we com-
pute the RNMSE over 50 simulations by varying initial conditions and parameters
pij . The RNMSE over C and M are shown in Fig. 10.3(a) and Fig. 10.3(b), using both
group Lasso and Algorithm 5 with the maximal iteration number kmax = 5 (see line
4 in Algorithm 5). Inspection of the results presented in Fig. 10.3(a) and Fig. 10.3(b)
clearly show that Algorithm 5 outperforms significantly group Lasso in terms of
RNMSE.

10.3 Online Model Selection

10.3.1 Background

Transcription and translation are two intrinsically slow processes (time scale of min-
utes in bacteria). While, on one hand, this implies there is no stringent need to ob-
serve cells with high sampling frequencies, it also means that identification/control
experiments of biomolecular circuits usually last hours to days, i.e. much longer than
similar experiments carried out on electrical or mechanical systems. Over such long
time frames it is necessary to (a) effectively trap cells and (b) observe their internal
dynamics. We also need to extract single cell trajectories while we (c) stimulate them
with time-varying profiles of the molecules that serve as inducers for the network of
interest. Most importantly it is necessary to achieve these objectives with minimally
invasive techniques, i.e. using methods that ideally, will not affect the processes we
want to quantify (a point not to be overlooked as factors like heat, e.g. generated
by the light used to obtain microscopy images, or mechanical stresses, e.g. used
to physically hold cells in place while imaging them, will trigger stress responses
in cells). For these reasons we need to continuously (i) supply cells with nutrients
and (ii) remove toxic metabolites while (iii) retaining the ability to condition their
microenvironment to expose them to the appropriate externally applied stimuli.
All these requirements, combined, significantly limit the technologies that can be
used to identify and control biomolecular circuits in vivo: for example commonly
used methods, such as flask-based sampling or bioreactors, are unable to provide
us with single cell trajectories. Microfluidics, enabling us to fabricate transparent
microchannels where cells can be trapped and observed while being exposed to a
continuous flow of nutrients and chemicals controlled by a computer, does allow to
meet the requirements mentioned above.

192 Biochemical Reaction Network Identification

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.95

0.8

0.9

1

0.75

0.85

0

R
N

M
S

E

(a) Group Lasso (first iteration of Algorithm 5). The minimal RNMSE is around
0.75

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.3

0

0.1

0.2

1

0.9

0.5

0.4

0.8

0.7

0.6

0

R
N

M
S

E

(b) Algorithm 5 with maximal iteration number kmax = 5. The minimal
RNMSE is almost 0.

Fig. 10.3 Algorithm comparison in terms of RNMSE ∥βestimate − βtrue∥2/∥βtrue∥2 aver-
aged over 50 independent experiments.

10.3 Online Model Selection 193

In the view of the above, we will consider the setup documented in [124] as the
reference platform for the in vivo implementation of our model selection approach.
In this configuration, described in Fig 10.4, a microfluidic device containing the
cells carrying the network of interest, is mounted on the stage of a fully automated
microscope that takes phase contrast and fluorescence images of the cells at regular
time intervals. Such images are used by the computer to locate cells (phase contrast)
and estimate the amount of protein (fluorescence imaging) in real-time via a custom
image processing algorithm developed in MATLAB. The computer, then, uses a set
of fluidic pressure actuators to vary the level of inducer the cells are exposed to.
Interestingly, this configuration allows us to continuously (a) update our model on-
line and, potentially, (b) automtically carry out multiple model-selection iterations
within the same experiment, a unique feature of this approach [163].

Fig. 10.4 Technological platform for in-vivo model selection of synthetic circuits.
In this closed loop configuration the computer (upper right corner) takes images
of the cells in the microfluidic device (lower left corner) via a microscope (upper
left corner), quantifies the output of the network of interest in real time and applies
the next sample of input(s) via the fluidic pressure actuation system (lower right
corner).

194 Biochemical Reaction Network Identification

In order to extend the experimental throughput and increase our model discrim-
ination capabilities we will use the MDAW microfluidic device described in [59]:
in this device 8 independent model selection experiments can be carried out at the
same time. We will seed the same strain in each of the 8 chambers and image the 8
chambers at regular intervals. In so doing we will obtain 8 independent datasets
(each formed by an exponentially growing number of single cell trajectories) that we
will use to design and implement our model selection experiment.

Mathematical model

Throughout this Chapter, we will assume that the process of interest can be modelled
by a discrete-time system of the form:

xt+1 = g(xt, ut, β) + ξt,

zt = xt + ηt,
(10.8)

where the xt = [x1,t, . . . , xnx,t] ∈ Rnx is the state vector at discrete time point t; β

represents the vector of parameters to be identified; the function g : Rnx × Rnu ×
Rnβ → Rnx is nonlinear and depends (explicitly) on the input vector ut ∈ Rnu . The
process noise ξt ∈ Rnx and measurement noise ηt ∈ Rnx are assumed to be mutually
independent Gaussian random variables with known positive covariance matrices
Qt and Rt, respectively.

The state vector xt usually contains concentrations of certain chemical species of
interest, such as mRNAs or proteins. The output signal zt represents the quantities
we can measure experimentally.

10.3.2 Questions of interest

1. Estimation of the model structure, i.e. the functional structure of gn(·) in (10.8).

2. Estimation the parameter vector β therein.

3. Identification of a single model from multiple datasets emanating from per-
turbation experiments performed on systems of the form given in (10.8) that
differ in terms of their parameters but not their parametric structure.

10.3 Online Model Selection 195

X =

 x11 . . . x81 hill(x11, 0.5, 0, 2) . . . hill(x81, 1.5, 0, 3) hill(x81, 1.5, 3, 3) 1
...

...
...

...
...

...
...

x1M . . . x8M hill(x1M , 0.5, 0, 2) . . . hill(x8M , 1.5, 0, 3) hill(x8M , 1.5, 3, 3) 1


∈ RM×73.

(10.10)

For example, in the ideal noiseless case, a simple self-induction gene network
can be described as [169]:

dxt

dt
= −kxt + Vmaxxh

t

KM + xh
t

,

zt = xt.

(10.9)

where dxt

dt
is a numerical estimation of the time derivative of xt (see appendix of

[140] for details), k is the decay rate of gene product x, Vmax is the maximum gene
expression rate, KM is the threshold value in terms of the concentration of gene
product x that results in a production rate of 0.5Vmax, and h is the Hill coefficient
(a.k.a. the cooperativity coefficient) associated with the self-induction of gene x.

The identification problem can be formulated as: given some time series data cor-
responding to discrete time point measurements of the gene product, i.e., z1, · · · , zM+1,
can the model given in (10.9) be identified or approximated?

10.3.3 Simulations

We use the example in the previous Section 10.2 with the same parameters and initial
condition settings for both model and Algorithm 5.

We are interested in identifying the regulation type (linear or Hill type, repression
or activation) and the corresponding parameters pi1, the basal expression rate pi4 and
the degradation rate constant pi5, as well as Ki, ∀i. Since there are 8 state variables,
we can construct the dictionary matrix X with 8 (basis functions for linear terms)
+(8 ∗ 8) (8 Hill functions with Ki ∈ {0.5, 1.5} and hnum, hden ∈ {2, 3}, both repression
and activation form) +1 (constant unit vector) = 73 columns. The corresponding
matrix X is given in Eq. (10.10). Note that none of the Hill functions in the set of
dictionary functions has a value of Ki equal to 1.

196 Biochemical Reaction Network Identification

To quantify the identification accuracy of the algorithm, we use the root of
normalised mean square error (RNMSE) as a performance index, i.e.

RNMSE = ∥β̄estimate − β̄true∥2

∥β̄true∥2

where β̄true (resp. β̄estimate) represents the average of the C parameters values (resp.
the average of the C identified parameters values). Similarly to what we showed in
Fig. 1 of [140], we observe that a larger number of experiments C or a larger length
of single time series data M leads to a smaller RNMSE value.3 In our simulation,
we take C = 10 and M = 100. The corresponding RNMSE for the application
of Algorithm 5 to the identification of model (10.5) is RNMSE = 0.047 when 50
independent experiments are considered.

Since the identification procedure for each state variable is independent, we only
focus on the identification of the dynamics ẋ1. Similar results are obtained for the
identification of the other equations Both the linear term x1 and the constant term
can be identified with an average parameter estimation value of p̄14 = 0.501 ≈ 0.5
and p̄15 = 1.07 ≈ 1.

In our result, both dictionary functions 1
0.5+x3

8(t) and 1
1.5+x3

8(t) are selected by Algo-
rithm 5 to be part of the dynamics of dx1(t)/dt, and the average of the corresponding
parameters over C = 10 experiments are 8 and 35.7, respectively. This means that

40
1+x3

8(t) can be approximated by 8
0.5+x3

8(t) + 35.7
1.5+x3

8(t) . The corresponding fitting result
can be found in Figure 10.5.

Next we turn to model refinement (“Filter” in Algorithm 18) using an Unscented
Kalman filter [200]. For this, we consider the following equation for dx1/dt:

dx1(t)
dt

= γ1

γ2 + x3
8(t)

+ γ3 − γ4x1(t). (10.11)

where dx1(t)
dt

is a numerical estimation of the time derivative of x1(t). where the new
parametric structure γ1

γ2+x3
8(t) has been used to replace the term 8

0.5+x3
8(t) + 35.7

1.5+x3
8(t) that

was identified by Algorithm 5. Fig. 10.6 shows the evolution of the estimated values
of the parameters in equation (10.11) as a function of the number of streaming data
iterations of the Unscented Kalman Filter.

3The RNMSE values for varying values of C and M are not shown here due to space limitation.

10.3 Online Model Selection 197

0 2 4 6 8 10
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Hill functions with different K

1
0.5+x3

1
1+x3

1
1.5+x3

0.2
0.5+x3 +

0.8925
1.5+x3

Fig. 10.5 After refinement iterations (see Figure 10.6) the parameters γ1 and γ2 of the
new structure γ1

γ2+x3
8

selected to replace 8
0.5+x3

8
+ 35.7

1.5+x3
8

(identified from Algorithm 5)
are estimated to be γ1 = 39.99 and γ2 = 0.9998, respectively.

0 5 10 15 20 25 30 35 40 45 50
38

40

42

γ1

actual
estimate

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

γ2

actual
estimate

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

γ3

actual
estimate

0 5 10 15 20 25 30 35 40 45 50
0.9

1

1.1

γ4

actual
estimate

Fig. 10.6 Evolution of the estimated values of the parameters in equation (10.11) as a
function of the number of streaming data iterations of the Unscented Kalman Filter.

198 Biochemical Reaction Network Identification

10.4 Identificaton Switched Biochemical Reation Net-
works

Consider a biochemical system with n species X1, . . . , Xn. We denote the concentra-
tion of species Xj as xj . Let U be the set of uni-species reactions and B be the set of bi-
species reactions. A uni-species reaction i ∈ U is defined by the index ri ∈ {1, . . . , n}
of its single reactant species, the associated real-valued rate constant ki > 0, and the
integer product coefficients for each species ci,j ≥ 0: miXri

ki→ ci,1X1 + . . . + ci,nXn.

A bi-species reaction i ∈ B is defined by the indices ri,1, ri,2 ∈ {1, . . . , n} of its two
reactant species, the real-valued rate constant ki > 0, and the integer product co-
efficients for each species ci,j ≥ 0: miXri,1 + niXri,2

ki→ ci,1X1 + . . . + ci,nXn. Using
the law of mass action, the dynamics of the concentrations xj ≥ 0 of species Xj are
given according to the ordinary differential equations

ẋj =−
∑

i∈U|ri=j

kix
mi
j −

∑
i∈B|ri,1=j

kix
mi
j xni

ri,2
−

∑
i∈B|ri,2=j

kix
mi
ri,1

xni
j

+
∑
i∈U

ci,jkixri
+
∑
i∈B

ci,jkixri,1xri,2 .
(10.12)

We can expand (10.12) for more than two species, though this can be rarely found
in reality due to highly improbable simultaneous three-species molecular collision
mechanisms.

Eq. (10.12) can be modelled using the general form: ẋ = Sv(x), where x is the
vector of species whose elements are xj , S is the stoichiometry matrix and v(x) is
a vector of propensity functions. The matrix S and the propensity vector v(x) can
be built based on the biochemical reactions and their rates. Hence, without loss of
generality we can assume that S is a matrix whose elements are real constants and
v(x) is a vector whose elements are nonlinear functions of x as in (10.12). Biochemical
processes can go through different phases in time; for example, a cell cycle in bacteria
or diurnal alternations in plants. These switches, which are typically triggered by
time dependent processes or by some external force, can be fitted into our model
as follows: ẋ = Sα(t)v(x), where α(t) is a sequence of integers in a bounded set and
Sα(t) takes values from an unknown set {S1, . . . , SNmodes

} depending on time.

In what follows, we consider the system dynamics expressed in discrete-time
and subjected to additive i.i.d. Gaussian noise ξ(k) with known statistics.

x(k + 1) = Sα(k)v(x(k)) + ξ(k). (10.13)

10.4 Identificaton Switched Biochemical Reation Networks 199

We consider time-series data obtained from a chaotic Lorenz Oscillator imple-
mented in vitro using DNA computations [176]. From the associated biochemical
reactions, a polynomial ODE can be derived using the law of mass action. We
artificially generate data using this oscillator model but change certain parameters
at certain time. This can be realised in vitro by changing experiment conditions or
enzyme concentrations. The Lorenz oscillator can be described by the discretised
differential equations

[
y1(k + 1)− y1(k)

δt
,
y2(k + 1)− y2(k)

δt
,
y3(k + 1)− y3(k)

δt

]
= [p1(k)(y2(k)− y1(k)), y1(k)(p2(k)− y2(k)), y1(k)y2(k)− k2(k)y3(k)] .

where we the fix sampling time to δt = 0.02 (arbitrary units).
Initially (“Mode 1”), the parameters are p1 = 10, p2 = 30, p3 = 8/3. From k = 201

to k = 400 (“Mode 2”), the parameters are changed to p1 = 10, p2 = 30, p3 = 4. For
the kinetics of y1 and y3, the nonlinear dynamics change after switching from Mode
1 to Mode 2. For y2, the parameters do not switch. We construct the basis functions
as (

y0
1(k)y0

2(k)y0
3(k), y0

1(k)y0
2(k)y1

3(k), . . . , yn1
1 yn2

2 (k)yn3
3 (k)

)
.

We index the parameter vector β(k) as [w000(k), w001(k), . . . , wn1n2n3(k)], choose λ = 1
and ρ = 100 and set the initial condition to [y1(1), y2(1), y3(1)] = [0.2444,−2.217, 2.314].
Finally, we set n1 = 1, n2 = 1 and n3 = 1. The true and estimated parameters’ evolu-
tion over time are shown in Figure10.7.

200 Biochemical Reaction Network Identification

True Parameters

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

Estimated Parameters

Time

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7 −20

−10

0

10

20

−20

−10

0

10

20

(a) True and estimated parameters for y1.

True Parameters

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

Estimated Parameters

Time

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

−10

0

10

20

30

−10

0

10

20

(b) True and estimated parameters for y2.

True Parameters

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

Estimated Parameters

Time

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7
−4

−3

−2

−1

0

1

−4

−3

−2

−1

0

1

(c) True and estimated parameters for y3.

Fig. 10.7 True (upper panel) and estimated (lower panel) parameters’ evolution over
time. The horizontal axis represents time, whereas the vertical axis represents the
estimated coefficients. From top to bottom, the index goes from 001 to 111.

Chapter 11

Complex Network Reconstruction

202 Complex Network Reconstruction

11.1 Centralised Identification

A classical example in physics, engineering and biology is the Kuramoto oscillator
network [182]. We consider a network where the Kuramoto oscillators are noniden-
tical (each has its own natural oscillation frequency ωi) and the coupling strengths
between nodes are not the same. The corresponding discrete-time dynamics can be
described by

ϕi(t + 1)− ϕi(t)
∆t

= ωi +
n∑

j=1,j ̸=i

wijgij(ϕj(k)− ϕi(k)) + ξi(k), i = 1, . . . , n, (11.1)

where ϕi ∈ [0, 2π) is the phase of oscillator i, ωi is its natural frequency, and the
coupling function gij is a continuous and smooth function, usually taken as sin, ∀i, j.
wij represent the coupling strength between oscillators i and j thus [wij]n×n defines
the topology of the network. Here, assuming we don’t know the exact form of gij , we
reconstruct from time-series data of the individual phases ϕi a dynamical network
consisting of n Kuramoto oscillators, i.e., we identify the coupling functions gij(·) as
well as the model parameters, i.e., ωi and wij , i, j = 1, . . . , n.

To define the dictionary matrix X, we assume that all the dictionary functions
are functions of a pair of state variables only and consider 5 candidate coupling
functions gij : sin(xj − xi), cos(xj − xi), xj − xi, sin2(xj − xi), and cos2(xj − xi). Based
on this, we define the dictionary matrix as

Xij(xj(k), xi(k)) ≜[sin(xj(k)− xi(k)), cos(xj(k)− xi(k)), xj(k)− xi(k),
sin2(xj(k)− xi(k)), cos2(xj(k)− xi(k))] ∈ R5.

To also take into account the natural frequencies, we add to the last column of Xi

a unit vector. This leads to the following dictionary matrix Xi:

Xi ≜


Xi1(x1(1), xi(1)) . . . Xin(xn(1), xi(1)) 1

...
...

...
...

Xi1(x1(M), xi(M)) . . . Xin(xn(M), xi(M)) 1

 ∈ RM×(5n+1).

Then the output can be defined as

yi ≜
[

ϕi(2)− ϕi(1)
∆t

, . . . ,
ϕi(M + 1)− ϕi(M)

∆t

]⊤

∈ RM×1, i = 1, . . . , n.

11.1 Centralised Identification 203

To generate the time-series data, we simulated a Kuramoto network with n =
100 oscillators, for which 10% of the non-diagonal entries of the weight matrix
[wij]n×n are nonzero (assuming gii and wii are zeros), and the non-zero wij values are
drawn from a standard uniform distribution on the interval [−10, 10]. The natural
frequencies ωi are drawn from a normal distribution with mean 0 and variance 10. In
order to create simulated data, we simulated the discrete-time model (11.1) and took
‘measurements data points’ every ∆t = 0.1 between t = 0 and t = 45 (in arbitrary
units) from random initial conditions drawn from a standard uniform distribution
on the open interval (0, 2π). Thus a total of 451 measurements for each oscillator
phase ϕi ∈ R451×501 are collected (including the initial value). Once again, it should
be noted that the the number of rows of the dictionary matrix is less than that of
columns.

We here investigate the performance of various algorithms including ours (Algo-
rithm 4 in the main text) for different signal-to-noise ratios of the data. We define
the signal-to-noise ratio (SNR) as SNR(dB) ≜ 20 log10(∥Xβtrue∥2/∥Ξ∥2). We consid-
ered SNRs ranging from 0 dB to 25 dB for each generated weight. To compare the
reconstruction accuracy of the various algorithms considered, we use the root of
normalised mean square error (RNMSE) as a performance index, i.e.

∥β̂ − β∥2

∥β∥2

, where β̂ is the estimate of the true weight β. For each SNR, we performed 200
independent experiments and calculated the average RNMSE for each SNR over
these 200 experiments. In each “experiment”, we simulated a Kuramoto network
with n = 100 oscillators, for which 10% of the non-diagonal entries of the weight
matrix [wij]n×n were nonzero (assuming gii and wii are always zero). The non-zero
wij values were drawn from a standard uniform distribution on the interval [−10, 10].
The natural frequencies ωi were drawn from a normal distribution with mean 0 and
variance 10.

Based on these settings, we compared Algorithm 4 with nine other state-of-
the-art sparse linear regression algorithms available at [54]. [54] provides access
to a free MATLAB software package managed by David Donoho and his team and
contains various tools for finding sparse solutions of linear systems, least-squares
with sparsity, various pursuit algorithms, and more. We compare our identifica-
tion algorithm with nine other state-of-the-art sparse linear regression algorithms
available at [54], namely, BP (Basis Pursuit), IRWLS (Iteratively ReWeighted Least

204 Complex Network Reconstruction

Squares), ISTBlock (Iterative Soft Thresholding, block variant with least squares pro-
jection), LARS (Least-Angle RegreSsion), MP (Matching Pursuit), OMP (Orthogonal
Matching Pursuit), PFP (Polytope Faces Pursuit), Stepwise (Forward Stepwise), and
StOMP (Stagewise Orthogonal Matching Pursuit).

In Fig. 11.1(a), we plot, for various SNRs, the average RNMSE obtained using
our centralised algorithm (both implementation using the generic parser CVX and
centralised ADMM implementations) and other algorithms in [54]. In Fig. 11.1(b),
we plot, for the various SNRs considered, the average computational running time
required by our algorithm and the other algorithms from [54]. During this compar-
ison, the inputs for the algorithms listed in these algorithms are always the same,
i.e. the dictionary matrix X and the data contained in y. The initialisation and pre-
specified parameters for these algorithms were set to their default values provided
in [54]. Interested readers can download the package from [54] and reproduce the
results presented here under the default settings of the solvers therein.

It should be noted that the dictionary matrices in all the experiments are rank
deficient, i.e. neither column rank nor row rank are full. As a consequence, both the
MP and OMP algorithm fail to converge or yield results with extremely large RNMSE.
As these two algorithms cannot satisfactorily be used, they have been removed from
the comparison results presented in Figures 11.1(a) to Figures 11.1(b). It can be seen
from Figure 11.1 that our algorithm outperforms all the other algorithms in [54] in
terms of RNMSE. The CVX implementation requires more computational running
time compared to all other algorithms. However, the ADMM implementation is
competitive in both accuracy and speed.

Discussion

It can be seen from Fig. 11.1 that our algorithm outperforms all the other algorithms
in [54] in terms of RNMSE. However, the implementation using CVX requires more
computational running time compared to all other algorithms. There are potentially
two reasons for this. The first one is that our algorithm is implemented using the
CVX package as a parser [69]. Parsers similar to CVX also include YALMIP [119]. CVX
and YALMIP call generic SDP solvers, e.g. SDPT3 [193] or SeDuMi [183], to solve
the convex optimisation problem at hand (we use SeDuMi). While these solvers
are reliable for wide classes of optimisation problems, they are not specifically
optimised in terms of algorithmic complexity to exploit the specific structure of
particular problems, such as ours. The second reason comes from the 5th step of

11.1 Centralised Identification 205

5 10 15 20 25
10

−2

10
−1

10
0

10
1

RNMSE Comparision For Different Algorihtms

SNR (dB)

R
N

M
S

E

ADMM Implmentation
CVX Implementation
BP
IRWLS
ISTBlock
LARS
PFP
Stepwise
StOMP

(a) Parameter RNMSE ∥βestimate − βtrue∥2/∥βtrue∥2 over various SNRs.

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

Computational Running Time Comparision For Different Algorihtms

SNR (dB)

C
om

pu
ta

tio
na

l r
un

ni
ng

 ti
m

e

ADMM Implmentation
CVX Implementation
BP
IRWLS
ISTBlock
LARS
PFP
Stepwise
StOMP

(b) Computational running time (in seconds) over various SNRs.

Fig. 11.1 Parameter RNMSE ∥βestimate − βtrue∥2/∥βtrue∥2 and computational running
time averaged over 200 independent experiments for the signal-to-noise ratios 0 dB,
5 dB, 10 dB, 15 dB, 20 dB, and 25 dB.

206 Complex Network Reconstruction

Algorithm 4 where the M × N matrix σ2I + XU(k)W(k)X⊤ has to be inverted to
update the weights for the next iteration. Though a pruning rule has been discussed,
such inversion at each iteration is inevitable compared to the algorithms considered
in [54].

11.2 Distributed Identification

For all the following examples dealt with using ADMM implementations, we set the
penalty parameter in the augmented Lagrangian ρ = 1 and the scalar regularisation
parameter λ = 0.001∥XT y∥∞. We also considered termination tolerances ϵabs = 10−4

and ϵabs = 10−2 and set the ADMM iteration number to be 200 and the weight
updating iteration number to be 5 throughout all algorithms. We set the threshold
for pruning γ to be 10−3.

Now we introduce another performance index Phase Diagram. A useful perfor-
mance index is the Phase Diagram [Donoho and Stodden], which is used to illustrate
how sparsity levels (defined as ρ = K/M , where K counts the number of the nonzero
elements in β) and underdeteminedness (δ = M/N) affect the performance of an
algorithm. It should be noted that the phase diagrams presented here are empirical.
More on phase diagrams, including the results, will be presented later.

Next we investigate the relation between the underdeteminedness δ = M/N and
the sparsity level ρ = K/M , i.e. the phase diagram. We use the same specifications
of the dictionary matrix as above. To recap, sine functions are used as candidate
functions to construct the dictionary vector as Xij(k) ≜ [sin(xj(k)− xi(k))] ∈ R. We
assume the natural frequencies θi to be zero for all i. Therefore, the column size of the
dictionary matrix Xi equals to the dimension of the network, i.e. N = n. However,
The network topology is generated differently from the centralised identification.
Here, we change the nonzero entries proportion from 10% to K/N .

In Figure 11.2, show the parameter RNMSE in the noiseless case for both Algo-
rithm 4 and direct Lasso reconstruction. From Figure 11.2, we can clearly find a
“cliff” or “breakdown” from dark blue to light blue area. Such cliff occurs for values
of the RNMSE around 0.5. By Lasso reconstruction we mean one single iteration
of Algorithm 4. We varied the underdeteminedness δ = M/N from 0.05 to 1 with
N = 1000. The dark blue area, below the cliff, indicates the region within which the
algorithm recovered the underlying model with near zero error. Above the cliff in
the coloured area, the algorithm was unable to recover the correct model. As one

11.2 Distributed Identification 207

Underdeteminedness δ = M/N, N=1000

S
p

a
rs

it
y
 ρ

 =
 K

/M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 0

0.2

0.4

0.6

0.8

1

(a) Parameter RNMSE for Algorithm 4.

Underdeteminedness δ = M/N, N=1000

S
p
a

rs
it
y
 ρ

 =
 K

/M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 0

0.2

0.4

0.6

0.8

1

(b) Parameter RNMSE for Lasso reconstruction.

Fig. 11.2 Phase diagrams for Algorithm 4 (left panel) and Lasso reconstruction (right
panel) in the noiseless case. The number of measurements required to correctly
reconstruct the network with Algorithm 4 is significantly lower in comparison with
Lasso.

208 Complex Network Reconstruction

proceeds further above the cliff, the ability of the algorithm to recover the model
progressively drops. Each colour indicates a different RNMSE over 50 realisations.
Considering both subfigures in Figure 11.2, we can see that each of the phase dia-
grams shows a transition from accurate model recovery to very inaccurate as the
underlying complexity of the model increases. The “breakdown” in the error level
shows where the algorithm stops recovering the correct underlying model. Note
how increased model noise drives the breakdown point lower, at sparser models.
The noise level also limits the accuracy, even when the correct model type is re-
covered, as the coefficients are estimated with more noise when the noise in the
underlying data increases [Donoho and Stodden]. Carrying out additional tests for
various network sizes N (results not shown), surprisingly, we observed that the
corresponding phase diagrams remain very similar and exhibit the same trends.
This implies that, if the sparsity K can be estimated based on expert knowledge,
a rough estimate of the number of observations needed to guarantee an a priori
defined reconstruction performance can be chosen. In practice, K tends to be very
small while N is usually large due to the need to a priori consider a large number of
candidate nonlinear dictionary functions. From the phase diagrams, it also can be
implied that the more candidate functions we introduce, the more observations we
need when sparsity is fixed.

Based on the above, it is informative to revisit the comparison where N =
501. The underdeterminess M/N = 450/501 ≈ 0.9 and the sparsity level K/M ≈
10/450 ≈ 0.02. Regarding various SNRs, reconstruction for data with high SNRs
yields better performance. This is congruent with the results presented in the phase
diagrams of Figure 11.2.

Finally, it is interesting to compare the results obtained through direct Lasso
reconstruction (the first iteration of Algorithm 4) and Algorithm 4. Figure 11.2
validates that Algorithm 4 delivers solutions with higher sparsity level in comparison
with Lasso reconstruction. Moreover, the number of measurements required to
correctly identify the structure in the noiseless case is much lower for Algorithm 4
in comparison with Lasso. This is a major benefit when identifying systems with
low sampling rate and low number of measurements. In the presence of noise it is
hard to quantify the performance criteria for correct reconstruction, since a larger
number of models can fit the data. However, reconstructed models obtained using
Algorithm 4 are typically sparser in comparison with models obtained using Lasso.

Next, we compare the computational time for different network sizes by dis-
tributing the computations over various numbers of CPU cores. In this comparison,

11.2 Distributed Identification 209

2 4 6 8 10 12 14

10
1

10
2

10
3

Number of CPU cores

A
va

ra
ge

 to
ta

l t
im

e
fo

r
pa

ra
lle

l c
om

pu
ta

tio
n

 (
se

co
nd

s)

N = 1000
N = 2000
N = 3000
N = 4000
N = 5000
N = 6000
N = 7000
N = 8000
N = 9000
N = 10000

Fig. 11.3 Average computational running time for the βt+1
i update in Algorithm

4 for a fixed sparsity K = 10 when different numbers of CPU cores and different
network dimensions ranging from N = 1000 to N = 10000, are considered. Units
are in seconds.

210 Complex Network Reconstruction

we consider only sine functions as candidate functions to construct the dictionary
element, i.e. Xij(k) ≜ [sin(xj(k) − xi(k))] ∈ R. We assume the natural frequencies
θi to be zero for all i. Therefore, the column size of the dictionary matrix Xi equals
the dimension of the network, i.e. N = n. Here, N is ranging from 1000 to 10000
and the sparsity K is fixed to 10. For each N , time-series are generated in the same
manner as above, while M is fixed at 500. In the implementation of the distributed
algorithm, we use the MATLAB command parfor and matlabpool(‘size’) to
parallelise the βk-update in Algorithm 4. The parameter size is varied from 2 to 12.
Experiments over the five SNRs (5 dB, 10 dB, 15 dB, 20 dB, 25 dB) are performed for
each N . From the results we found that the computation time over each SNR varied
slightly (at least within the same magnitude), which is consistent with the simulation
results presented in Figure 11.1. In Figure 11.3, we show the average computational
running time for different number of CPU cores used and for different network
dimensions ranging from 1000 to 10000. Each point in the figure is obtained by
averaging over 5× 50 experiments for each network size.

Discussion

One of the major drawbacks of centralised algorithm is their high computational
complexity in comparison with other approaches. To alleviate this drawback, we
have derived a decentralised version of the algorithm, which can be distributed
between several computational units. We illustrate the effectiveness of our decen-
tralisation algorithm by distributing the computation between several computer
cores and consequently showed an almost a log-linear gain in computational time
for large-scale systems.

The presented algorithm has a better performance in terms of Normalised Mean
Square Error in comparison with state-of-the-art-methods including Lasso and
reweighed ℓ1 methods with a logarithmic penalty function [32]. Moreover, we
empirically show that the number of observations required to obtain a correct
reconstruction in the noiseless case using the presented algorithm is much lower
than that of the standard Lasso algorithm. In the presence of noise, such an empirical
comparison is hard to perform due to the identifiability problem. That is, we can
obtain several models fitting the data with the same sparsity level but completely
different sparsity patterns. Hence finding a model matching the “true” structure can
simply be impossible.

Phase diagrams can provide additional insight into regression problems and
the algorithms used to solve them. In [6], the authors use dictionary matrices with

11.2 Distributed Identification 211

Gaussian i.i.d. entries and provide the first rigorous analysis that explains why
phase transitions are ubiquitous in random ℓ1 regression problems. In our setting,
entries of dictionary matrices are not Gaussian i.i.d, hence the theoretical results
from [6] do not apply. However, we observed that the phase diagrams for various
network size N remain very similar and exhibit the same trends and “breakdowns”.
Taking into account the results presented in [6], the similarities that we observed
among the phase diagrams might be more than just empirical observations. This
will constitute the basis for one of our future work directions.

Chapter 12

Fault Diagnosis of Power System

214 Fault Diagnosis of Power System

12.1 Introduction

Power networks are large-scale spatially distributed systems. Being critical in-
frastructures, they possess strict safety and reliability constraints. The design of
monitoring schemes to diagnose anomalies caused by unpredicted or sudden faults
on power networks is thus of great importance [170]. To be consistent with the
international definition of the fault diagnosis problem, the recommendations of the
IFAC Technical Committee SAFEPROCESS is accordingly employed in what follows.
Namely, this work proposes a method to: 1) decide whether there is an occurrence of
a fault and the time of this occurrence (i.e. detection), 2) establish the location of the
detected fault (i.e. isolation), and 3) determine the size and time-varying behaviour
of the detected fault (i.e. identification).

Since power networks are typically large-scale and have nonlinear dynamics,
fault diagnosis over transmission lines can be a very challenging problem. This
chapter draws inspiration from the fields of signal processing and machine learning
to combine compressive sensing and variational Bayesian inference techniques so as
to offer an efficient method for fault diagnosis.

Most of the literature available on fault diagnosis focuses on systems approxi-
mated by linear dynamics [49] Beyond linear systems descriptions, the dynamics of
buses in power networks can be described by the so-called swing equations where
the active power flows are nonlinear functions of the phase angles. Works that have
considered fault detection and isolation in power networks include [171, 230, 125].
[171] focuses on distributed fault detection and isolation using linearised swing dy-
namics and the faults are considered to be additive. The method developed in [230]
is used to to detect sensor faults assuming that such faults appear as biased faults
added to the measurement equation. In [125], a fault detection and isolation residual
generator is presented for nonlinear systems with additive faults. The nonlinearities
in [125] are not imposed a priori on the model structure but treated as disturbances
with some known patterns.

To summarise, the works [49, 171] use linear systems to characterise the dynam-
ics of power networks and the faults are assumed to be additive. Though the system
dynamics are nonlinear in [230, 125], the faults are still assumed to be additive. The
methods developed on the basis of these conservative assumptions yield several
problems. Firstly, the linear approximation to nonlinear swing equations can only
be used when the phase angles are close to each other. However, when the system is
strained and faults appear, phase angles can often be far apart. Therefore, a linear

12.2 Power System Model 215

approximation is inappropriate in strained power network situations. Secondly, it
is well-known that a large portion of power system faults occurring in transmis-
sion lines do not involve additive faults, e.g. a short-circuit fault occurring on the
transmission lines between generators would correspond to some changes in the pa-
rameters of the nonlinear terms appearing in the swing equation [109]. Furthermore,
the inevitable and frequent introduction of new components in a power network
contributes to the vulnerability of transmission lines, which, if not appropriately
controlled, can lead to cascading failures [84]. Such cascading failures cannot be
captured by additive faults. Finally, the methods mentioned above only address fault
detection and isolation rather than identification, which is crucial to take appropriate
actions when faults occur on transmission lines.

Contributions. The power networks considered in this chapter are described by
the nonlinear swing equations with additive process noise. The faults are assumed to
occur on the transmission lines of the power network. The problem of fault diagnosis,
i.e. detection, isolation and identification, of such nonlinear power networks is
formulated as a compressive sensing or sparse signal recovery problem. To solve
this problem we consider a sparse Bayesian formulation of the fault identification
problem, which is then casted as a nonconvex optimisation problem. Finally, the
problem is relaxed into a convex problem and solved efficiently using an iterative
reweighted ℓ1-minimisation algorithm. The resulting efficiency of the proposed
method enables real-time detection of faults in large-scale networks.

The outline of this application is as follows. Section 12.2 introduces the nonlinear
model of power networks considered in this chapter. Section 12.3 formulates the
fault diagnosis problem of power networks as a compressive sensing or sparse signal
recovery problem. Section 12.4 applies the method to a power network with 20 buses
and 80 transmission lines and, finally, Section 12.5 concludes and discusses several
future problems.

12.2 Power System Model

Power systems are examples of complex systems in which generators and loads are
dynamically interconnected. Hence, they can be seen as networked systems, where
each bus is a node in the network. We assume that all the buses in the network are
connected to synchronous machines (motors or generators). The nonlinear model
for the active power flow in a transmission line connected between bus i and bus j

is given as follows. For i = 1, . . . , n, the behaviour of bus/node i can be represented

216 Fault Diagnosis of Power System

by the swing equation [171, 230, 109]

miδ̈i(t) + diδ̇i(t)− Pmi(t) = −
∑

j∈Ni

Pij(t), (12.1)

where δi is the phase angle of bus i, mi and di are the inertia and damping coefficients
of the motors and generators, respectively, Pmi is the mechanical input power, Pij

is the active power flow from bus i to j, and Ni is the neighbourhood set of bus i

where bus j and i share a transmission line or communication link.

Considering that there are no power losses nor ground admittances, and letting
Vi = |Vi|ej̃δi be the complex voltage of bus i where j̃ represents the imaginary unit,
the active power flow between bus i and bus j, Pij , is given by:

Pij(t) = w
(1)
ij cos(δi(t)− δj(t)) + w

(2)
ij sin(δi(t)− δj(t)), (12.2)

where w
(1)
ij = |Vi||Vj|Gij and Gij is the branch conductance between bus i and bus j;

and w
(2)
ij = |Vi||Vj|Bij and Bij is the branch susceptance between bus i and bus j.

If we let ξi(t) = δi(t) and ζi(t) = δ̇i(t), each bus can be assumed to have double
integrator dynamics. The dynamics of bus i can thus be written:

ξ̇i(t) = ζi(t), (12.3)

ζ̇i(t) = ui(t) + vi(t), (12.4)

where ξi, ζi are scalar states, vi(t) is a known scalar external input, and ui is the
power flow

vi(t) = Pmi(t)
mi

(12.5)

ui(t) = − di

mi

ζi(t)−
1

mi

∑
j∈Ni

[w(1)
ij cos(ξi(t)− ξj(t)) + w

(2)
ij sin(ξi(t)− ξj(t))]. (12.6)

The variables ξi and ζi can be interpreted as phase and frequency in the context of
power networks.

In [171], the cos(·) terms are neglected (no branch conductance between buses)
and it is assumed that phase angles are close to each other. The dynamics in (12.1)
are then linearised to yield

miδ̈i(t) + diδ̇i(t)− Pmi(t) = −
∑

j∈Ni

w
(2)
ij (δi(t)− δj(t)). (12.7)

12.2 Power System Model 217

Each bus i is assumed to have double integrator dynamics as described in (12.3) and
(12.4). ui(t) in (12.6) becomes a linear equation

ui(t) = − di

mi

ξi(t)−
1

mi

∑
j∈Ni

w
(2)
ij (ξi(t)− ξj(t)). (12.8)

For the linearised system (12.8), a bus k is faulty if for some functions fξk(t) and
fζk(t) not identical to zero either ξ̇i(t) = ζi(t) + fξk(t), or ζ̇i(t) = ui(t) + vi(t) + fζk(t).
The functions fξk(t) and fζk(t) are referred to as fault signals. Model-based or
observer-based fault diagnosis methods are available for power networks (see [171]
and reference therein). However, specific aspects need careful consideration when
dealing with fault diagnosis in power networks. Firstly, the simplified linear model
can only be used when the phase angles are close to each other. However, when the
system is strained and faults appear, phase angles can often be far apart.

In transmission systems the sin(·) term in (12.2) is the dominating one. To perform
a linearisation, one often assumes “small angle differences” between nodes and
hence “small” power flows. This typically works well under normal operation.
However, if the power system is under a lot of strain, i.e. if power flows are closer
to the theoretical maximum, the angle difference becomes close to 90 degrees and
the nonlinearity of the sin(·) term becomes quite noticeable. In particular, if, in a
transient state, the angle difference exceeds 90 degrees, generators typically loose
synchrony and trip. This is not captured by linear models. In such circumstances, the
linear model cannot be used to approximate the nonlinear model in (12.1) anymore.
Secondly, power networks are highly distributed and interconnected, and more than
one transmission line can be faulty at a given time. Thirdly, to be more realistic,
some process noise εi should be incorporated into the second-order system (12.1) for
each bus i:

miδ̈i(t) + diδ̇i(t)− Pmi(t) = −
n∑

j=1
Pij(t) + εi(t), (12.9)

Based on the swing equation above, the state space model (12.3) and (12.4) can then
be rewritten under the form:

ξ̇i(t) = ζi(t), (12.10)

ζ̇i(t) = ui(t) + vi(t) + εi(t), (12.11)

218 Fault Diagnosis of Power System

where the noise εi(t) is assumed to be i.i.d. Gaussian with

E(εi(p)) = 0
E(εi(p)εi(q)) = ϵ2

i δ(p− q).

Remark 23 Here we only consider a dynamical system model with process noise εi since, in
power networks, the measurement noise is small and would typically not have a catastrophic
effect on the performance of detection algorithms [187].

12.3 Fault Diagnosis Problem of Nonlinear Power Sys-
tems

Given the model and explanation above, we primarily focus on the following setting
in this chapter.

Definition 5 If a power network can be described by (12.10) and (12.11), the transmission
line between bus i and bus j is f

¯
aulty when w

(1)
ij changes to a new scalar w

[f](1)
ij and/or w

(2)
ij

changes to a new scalar w
[f](2)
ij , where w

(1)
ij and w

(2)
ij are the weights for the cos and sin terms

defined in (12.6).

Based on the considerations above and Definition 5, the problem that we are inter-
ested in solving is the following:

Problem 11 Having access to the measurements and the distribution of the noise, how
can we detect the occurrence and magnitude of a fault, namely, how can we estimate the
magnitude of the errors w

(1)
ij − w

[f](1)
ij and w

(2)
ij − w

[f](2)
ij , ∀i, j, using the smallest possible

number of samples.

In what follows we make the following assumption.

Assumption 11 The power networks described by (12.10) and (12.11) are fully measurable,
i.e. the phase angles of all the buses can be measured.

12.3.1 Model Transformation

Applying the forward Euler discretisation scheme to (12.10) and (12.11) and as-
suming the discretisation step ∆t is constant for all k, we obtain the following

12.3 Fault Diagnosis Problem of Nonlinear Power Systems 219

discrete-time system approximation to the continuous-time system (12.10) and
(12.11):

ξi(t + 1)− ξi(t)
∆t

= ζi(t), (12.12)

ζi(t + 1)− ζi(t)
∆t

= ui(t) + vi(t) + ηi(t), (12.13)

where the noise ηi(tk) is assumed to be i.i.d. Gaussian distributed: ηi(tk) ∼ N (0, σ2
i),

with E(ηi(tp)) = 0, E(ηi(tp)ηi(tq)) = σ2
i δ(tp − tq).

Defining the new variable

ei(t + 1) ≜ −(ζi(t + 1)− ζi(t))
∆t

− diζi(t)
mi

+ Pmi(t)
mi

, (12.14)

we have

ei(t + 1) = 1
mi

∑
j∈Ni

[w(1)
ij cos(ξi(t)− ξj(t)) + w

(2)
ij sin(ξi(t)− ξj(t))] + ηi(t), (12.15)

where ei, the power flow measurement, is treated as the output of the system. Since
the state variables ζ(t + 1) and ζ(t), the parameters ∆t, di and mi, and the input Pmi

are known, the quantity ei(t + 1) can be computed in real time. It should be noted
that “real time” is to be understood as “within the sampling time ∆t of the sensors
in power generators”.

By defining x(t) = [ξ1(t), . . . , ξN(t)] we can write (12.14) into a vector form:

ei(t + 1) = fi(x(t))βtrue
i + ηi(t), (12.16)

with
fi(x(t)) = [f (1)

i (x(t)), f
(2)
i (x(t))] ∈ R2n,

f
(1)
i (x(t)) = [cos(ξi(t)− ξ1(t)), . . . , cos(ξi(t)− ξN(t))] ∈ Rn,

f
(2)
i (x(t)) = [sin(ξi(t)− ξ1(t)), . . . , sin(ξi(t)− ξN(t))] ∈ Rn,

βtrue
i = [β(1)

i , β
(2)
i]T ∈ R2n,

β
(1)
i = [w(1)

i1 , . . . , w
(1)
iN] ∈ Rn,

β
(2)
i = [w(2)

i1 , . . . , w
(2)
iN] ∈ Rn,

where fi(x(t)) represents the transmission functions and βi represents the corre-
sponding transmission weights associated to the topology of the network.

220 Fault Diagnosis of Power System

Remark 24 In real power systems, a sampling frequency for phasor measurement unit
(PMU) as high as 2500 samples per second can be achieved. In this case, the sampling time
∆t is 4 ∗ 10−5 second and the Euler discretisation ξi(t+1)−ξi(t)

∆t
will typically provide a good

approximation of ξ̇i(t).

12.3.2 Fault Diagnosis Algorithm

As stated in Definition 5, if there are no faults occurring in the transmission lines
between bus i and other buses, the dynamics of the power networks will evolve
according to (12.16). The e

¯
xpected output for the next sampling time is defined to be

e
[e]
i (t + 1) = fi(x(t))βtrue

i . (12.17)

From (12.16) and (12.17), it is easy to show that ei(t + 1)−e
[e]
i (t + 1) is a stochastic vari-

able with zero mean and variance σ2. If there are faults occurring in the transmission
lines between bus i and other buses, the corresponding transmission weights will
change from βtrue

i to βfault
i . Similar to the definition of βtrue

i , βfault
i = [β[f](1)

i , β
[f](2)
i]T

where β
[f](1)
i = [w[f](1)

i1 , . . . , w
[f](1)
iN] and β

[f](2)
i = [w[f](2)

i1 , . . . , w
[f](2)
iN]. We thus have:

e
[f]
i (t + 1) = fi(x(t))βfault

i + ηi(t), (12.18)

where e
[f]
i is the output when there are f

¯
aults.

From (12.17) and (12.18), it is easy to find that e
[f]
i (t + 1)−e

[e]
i (t + 1) is a stochastic

variable with mean fi(x(t))(βfault
i − βtrue

i) and variance σ2. Denoting

yi = e
[f]
i − e

[e]
i , βi = βfault

i − βtrue
i ,

we have:
yi(t + 1) = fi(x(t))βi + ηi(t). (12.19)

Remark 25 We formulate the faults identification problem as a linear regression problem.
The dependent variable e

[f]
i (t + 1)− e

[e]
i (t + 1) is the difference between the expected output

and the faulty output; the unknown variable we want to estimate is the difference between
the faulty transmission weights and the true transmission weights.

There are three problems of interest based on the formulation in (12.19): a) detection
of a fault; b) isolation of a fault, i.e. determination of the type, location and time of

12.3 Fault Diagnosis Problem of Nonlinear Power Systems 221

occurrence of a fault; and c) identification of the size and time-varying behaviour of
a fault. In the noiseless case, when there are no faults, ∀i, yi and βi are both equal
to zero. On the other hand, when there are faults, certain yi are nonzero. So the
faults can be detected by identifying the entries yi that are nonzero. However, in the
noisy case, even when there are no faults, yi is nonzero most of the time since it is a
stochastic variable with zero mean. This can be interpreted in a probabilistic way by
Chebyshev’s Inequality:

p(|ei(t + 1)− e
[e]
i (t + 1)| ≥ lσ = σ∗) ≤ 1

l2

where l ∈ R+. According to this inequality, when there are no faults, the deviation
between true and expected outputs, i.e. |ei(t + 1) − e

[e]
i (t + 1)| cannot be much

greater than zero with high probability. On the other hand, when there is a fault, the
deviation between faulty and expected outputs, i.e. |e[f]

i (t + 1)− e
[e]
i (t + 1)| should

be much greater than zero with high probability.

From an isolation point of view and Chebyshev’s inequality, when |e[f]
i (t + 1)−

e
[e]
i (t + 1)| is much greater than σ, the fault can be isolated with high probability (e.g.

if the threshold is set to lσ = 10σ, then the probability is 99%).

If at time t0 faults have been detected and isolated, the remaining task is to
perform fault identification, i.e. to identify the location of the faults or equivalently to
find the nonzero entries in wi. Assuming that M +1 successive data points, including
the initial data point at t0, are sampled and defining N = 2n and

yi ≜ [yi(t1), . . . , yi(tM)]T ∈ RM ,

Xi ≜


f

(1)
i (x(t0)) f

(2)
i (x(t0))

...
...

f
(1)
i (x(tM−1)) f

(2)
i (x(tM−1))



=


fi(x(t0))

...
fi(x(tM−1))

 ∈ RM×N ,

ηi ≜ [ηi(t0), . . . , ηi(tM−1)]T ∈ RM ,

(12.20)

we can write N independent equations of the form:

yi = Xiβi + ηi, (i = 1, . . . , n). (12.21)

222 Fault Diagnosis of Power System

Based on the formulation in (12.21), our goal is to find βi given the output data
stored in yi.

To solve for βi in (12.21) amounts to solving a linear regression problem. This
can can be done using standard least square approaches. It should be noted that
the linear regression problem for bus i in (12.21) is independent from the the linear
regression problems for the other buses. In what follows, we will focus on finding
the solution to one of these linear regression problem and omit the subscripts i in
(12.21) for simplicity of notation. We thus write

y = Xβ + η, (12.22)

where y is the difference between the faulty measurements and the expected mea-
surements, or namely, the error measurements; and β is the difference between the
faulty parameters and the true parameters, or namely, the faults. We address this
linear regression problem under the following assumption.

Assumption 12 A maximum of S transmission lines are faulty, i.e. β has at most S

non-zero entries. In other words, β is S-sparse or mathematically, ∥w∥0 ≤ S. The constant
S is assumed unknown to the system administrator.

Remark 26 Assumption 12 is realistic for small values of S since in the context of a power
system, it is typically not the case that all the transmission lines are faulty simultaneously.
Furthermore, since buses in power networks are typically sparsely connected the number
of faults is typically much smaller than the size of the network n, i.e. S ≪ n. Therefore
S ≪ N = 2n.

On the other-hand, the size of y equals to the number of samples needed to
identify the location of the faults after the they occur. From a practical viewpoint, the
number of samples should be as small as possible. However, standard least square
approaches to (12.22) cannot meet this goal as they require at least 2N samples.
Moreover, the solution to the standard least square problem is generically dense
(hence, violating Assumption 12) and cannot be used to identify which transmission
lines are likely to be faulty by identification of the nonzero entries of the estimated
βfault − βtrue.

Based on Algorithm 19, we can summarise the fault diagnosis algorithm for
nonlinear power systems in Algorithm 20.

12.3 Fault Diagnosis Problem of Nonlinear Power Systems 223

Algorithm 20 Diagnosis for faults

1: Set a threshold σ∗ as indicated in Section 12.3.2, e.g. σ∗ = 10× σ;
2: for k = 0, . . . , T do
3: % T is an integer indicating the number of diagnosis rounds;
4: Collect ξi(t) and ζi(t) in (12.12) and (12.13)
5: for i = 1, . . . , N do
6: Calculate the output data ei(t + 1) in (12.14);
7: Calculate the expected output e

[e]
i (t + 1) in (12.17);

8: if |ei(t + 1)− e
[e+]
i (t + 1)| > σ∗ then

9: Fault is detected for bus i; % {fault detection procedure}
10: Compute yi(t + 1) in (12.19);
11: if |yi(t + 1)| > σ∗ then
12: Isolate bus i; % {fault isolation procedure}
13: end if
14: end if
15: Set M ← k;
16: Apply Algorithms propose in Chapter 6.6 to identify the faults β̂i; % {fault

identification procedure}
17: end for
18: if ∀i, ∥β̂i∥0 converge to some constant then
19: Break;
20: end if
21: end for
22: An estimate for the faults β̂ in (12.21), i = 1, . . . , n.

224 Fault Diagnosis of Power System

12.4 Numerical Study

The effectiveness of our theoretic developments is here illustrated for a randomly
generated power network with 20 buses. If all the buses are fully connected, the
possible number of transmission lines is 380. We assume that the number of trans-
mission lines is 79 (i.e. we assume that the sparsity of the network is around 20%).
Its dynamics can be described by the nonlinear swing equations described in (12.10)
and (12.11). w

(1)
ij and w

(2)
ij are positive real numbers as shown in Fig. 12.3(a). Let the

noise variance σ2 = 1. All the parameter values are selected to be similar to those in
[109, 146].

Since the sampling frequency is around 50 Hz for the PMU [109, 146], we assume
the sampling interval to be 20 ms. We thus assume that the discretisation step in
Section 12.3 is performed using a sampling interval ∆t = 20 ms.

Consider the power networks model in (12.10) and (12.11). At time instant t = 3s,
there are faults occurring in five transmission lines simultaneously. Specifically, a
randomly chosen set of faults can be described as follows:

∀(i, j) ∈ {(5, 18), (7, 2), (11, 15), (16, 18), (19, 9)}

, w
(1)
ij and w

(2)
ij in (12.6) respectively (which correspond to cos and sin terms) are set

to zeros. 5 buses are involved in these transmission lines, i.e. buses 5, 7, 11, 16 and
19. Following the procedure in Algorithm 20, we want to detect and isolate these 5
buses. After detection and isolation, the identification procedure will be performed.
We consider σ∗ = 10σ = 10 to initialise Algorithm 20.

First, we detect and isolate the buses with |yi(t + 1)| > σ∗. In Fig. 12.1, it can be
seen that at time instant t = 3.02s (only one sampling time after the faults occur), |y5|,
|y7|, |y11|, |y16| and |y19| are much greater than σ∗ (we set σ∗ = 10 here). Therefore,
we can draw the conclusion that buses 5, 7, 11, 16 and 19 are faulty and should be
isolated. Next, we identify the faults that occur in the transmission lines connecting
the previously isolated buses, i.e. buses 5, 7, 11, 16 and 19. In Fig. 12.2, the time
trajectory of the sparsity of the estimated fault ∥β̂i∥0, i.e. ∥βfault

i −βtrue
i ∥0 (see Remark

25), for i = 5, 7, 11, 16, 19 are depicted starting at the time point t = 3.02s when the
faults are detected. We set the pruning threshold to 10−3 during the identification
procedure of the faults. We define a positive integer n∗ to indicate the number of
identification rounds which are required to terminate the identification procedure,
e.g. n∗ = 10. As shown in Fig. 12.2, at time instant t = 3.52s, the sparsity of the

12.5 Conclusion and Discussion 225

0 1 2 3 4 5 6
−40

−30

−20

−10

0

10

20

30

40

Time (s)

y
i

bus 5
bus 7
bus 11
bus 16
bus 19

Fig. 12.1 Time-series of yi for all buses. The black dashed lines indicate the threshold
σ∗ in Algorithm 20. The coloured solid lines are the phase angle measurements for
bus i, i = 5, 7, 11, 16, 19. At time instant t = 3.02s, |y5|, |y7|, |y11|, |y16| and |y19| are
much greater than σ∗ (σ∗ = 10 here).

estimated fault, i.e. ∥wfault
i −wtrue

i ∥0 for bus i = 5, 7, 11, 16, 19 all become equal to 2
and remain unchanged afterwards. At time instant t = 3.72s, only n∗ = 10 sampling
rounds after t = 3.52s, we terminate the identification procedure as the sparsity for
all the estimated faults is considered to be stable.

In Fig. 12.3(a) and Fig. 12.3(b), we illustrate the true weight matrix and the
estimated absolute error matrix |βfault

i − βtrue
i |. As we can see, all the 5 faults that are

occurring in the transmission lines have been identified with high accuracy.

12.5 Conclusion and Discussion

In this Chapter, we addressed the problem of automatic fault diagnosis in large-
scale power networks where the buses are described by second-order nonlinear
swing equations with process noise. In particular, this work focused on a class
of transmission lines faults. We combined tools from compressive sensing and
variational Bayesian inference to develop a method to detect, isolate and identify

226 Fault Diagnosis of Power System

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

T
h
e
es
ti
m
a
te
d
‖w

f
au

lt
i

−
w

tr
u
e

i
‖ 0

bus 5
bus 7
bus 11
bus 16
bus 19

Fig. 12.2 Time-series of the sparsity of the estimated fault, i.e. ∥wfault
i −wtrue

i ∥0 for
bus i = 5, 7, 11, 16, 19.

the faults. An illustrative example showed the application of the proposed method
to fault diagnosis in nonlinear power networks.

Beyond the results in this chapter, some issues still remain for further investiga-
tion. This chapter assumed that the system is fully measurable. Current work aims
to extend the proposed framework to fault diagnosis with partially measured power
systems.

12.5 Conclusion and Discussion 227

5 10 15 20 25 30 35 40

5

10

15

20
10

20

30

40

50

60

70

80

90

(a) True weight matrix

5 10 15 20 25 30 35 40

5

10

15

20

5

10

15

20

25

30

35

(b) Absolute error weight matrix: |βfault
i − βtrue

i | (see Remark 25)

Fig. 12.3 Identification of transmission lines faults: (a) describes the true weight
matrix with around 20% nonzero entries. The left half of the matrix corresponds
to the weights for cos(·) terms while the right half is for sin(·) terms. (b) represents
the absolute error weight matrix, which is defined as |βfault

i − βtrue
i |. The non-

zero terms in the heat map correspond directly to the faulty transmission lines:
(5,18),(7,2),(11,15),(16,18),(19,9).

Part IV

Conclusion and Future Direction

Chapter 13

Conclusion

232 Conclusion

In summary, this thesis makes some attempts to address the following challenges
arising in big time series data analytics

General Problem Formulation for Nonlinear System Identification: Modern time
series data are often ultra-high dimensional (e.g. biology data, power systems data).
Furthermore, the type of data used for modelling are collected in different fashions,
e.g., from single or heterogeneous sources; collected “statically” or “streamingly”.
The underlying dynamical systems are often large-scale (e.g. gene networks, power
networks). However, the representation of nonlinear dynamical systems is extremely
simple or sparse. This thesis adapts and extends the regularised sparse learning
formulation in different aspects to address various nonlinear identification problems.

Both a selection of time-invariant and time-varying nonlinear dynamical systems
are covered. For time-invariant system, the classic nonlinear system identification
problem from single dataset is addressed in the beginning. Then we move to a more
practical and significant yet complicated scenario where heterogeneous datasets are
used simultaneously. Such datasets typically contain (a) data from several replicates
of an experiment performed on a biological system of interest and/or (b) data
measured from a biochemical system subjected to different experimental conditions,
for example, changes/perturbations in biological inductions, temperature, gene
knock-out, gene over-expression, etc. For time-varying systems, the regime-switch
system identification problem is considered, i.e., the problem of identifying both
the switching points and the nonlinear model structure within each regime. Then
the abrupt change point detection problem is considered. Using these, the classic
trending filtering and fault diagnosis problems are revisited. All the identification
problems are formulated as various ℓ0 type optimisation problems. In the end, we
discuss some technical issues on data processing arising from practical applications.

Efficient Nonlinear System Identification Algorithms: These algorithms are not
distinct and can be formulated in a unified way using Bayesian Learning with struc-
tural sparse prior. Furthermore, we suggest a series of iterative reweighted convex
relaxation schemes for connecting these algorithms to popular algorithms including
Lasso, Group-Lasso, Generalised-Lasso, Fused-Lasso and Graphical-Lasso. In this
part, we go beyond from simple nonlinear model class to more general class; from
data likelihood in Gaussian distribution to the more general exponential family. The
estimation of the stochastic term also discussed including ARMA and ARCH. Many
optimisation framework, such as (stochastic) gradient descent, Newton method,

233

Quasi-Newton method, alternating direction method of multiplier can be seamlessly
integrated into our formulation as either centralised or distributed optimisation
strategy to address high dimensionality and large scale problems. These algorithms
largely enrich not only the family of time series modelling algorithms but also sparse
signal recovery/modelling/estimation algorithms in various communities.

Future Directions Two future research directions based on the output of this thesis
are pointed out, both related to “neurons”. The first is focusing on theory and
algorithm about modelling/identification/learning on deep neural networks. The
second is focusing applications in neuroscience: understanding the neural basis of
decision making using mathematical modelling from big data. Some promising
results have showed the feasibility and potential impact of these directions.

Chapter 14

Future Direction

236 Future Direction

In this Chapter, several future works will be discussed. The begin with, I will
discuss the possibility to the linear system identification problem. Fortunately, two
papers are published on the internet in which I was co-authored and initialised the
idea, see Yue et al. [225], Jin et al. [96]. However, I will not include them in my thesis
as a contribution of mine.

Recently, deep learning using deep neural network representation has been
successfully applied in many artificial intelligence applications. Interestingly, learn-
ing/modelling/identifying a (deep) neural network is essentially a Nonlinear System
Identification problem as introduced by Lennart Ljung in [117, pp. 154] twenty years
ago. Maybe due to some historical reason, neural networks in Lennart Ljung’s
book [117] has not been discussed a lot, only 2 pages contents are about neural
network in his 609 pages book, say, multi-layer networks and recurrent neural net-
work. Now in this thesis, it is probably a good time to discuss more on learning
(identification) of deep neural networks from the perspective of nonlinear system
identification. Some promising results have showed the feasibility and potential
impact of the proposed directions.

It seems that the mechanism of human brain governing intelligence inspired
greatly the research in deep learning. Vice versa, to understand how brain works is
prominent and been hot for decades. In particular, the decision making process in
human is of great interest for myself. Given the incredible amount of neural data,
such as EEG, ECG, fMRI, etc., all recorded in terms of time series, there is great
potential to model the brain network to understand the mechanism.

14.1 Future Direction I: Bayesian Deep Learning

14.1.1 Background on Deep Learning and Deep Neural Networks

It is commonly accepted for a deep learning system, the underlying neural network
(NN) has to be big and complex. We argue that this perception may not be true.
Many of the neurons and their associated connections, both incoming and outgoing
ones, can be dropped permanently which results in a NN with much smaller size. This
is very similar to sparse distributed representations in brain. The human neocortex
has roughly 100 billion neurons, but at any given time only a small percent are
active in performing a particular cognitive function [130]. For the non-sequence
or non time dependent data, the active neurons may be fixed and not change over
time [43]. Dropping neurons is also the key idea in Dropout [86, 180], a successful

14.1 Future Direction I: Bayesian Deep Learning 237

regularisation technique to prevent overfitting in NNs. In their work, the neurons
are dropped temporarily in training. In the end for prediction, the model is still of full
size and fully connected.

Hereafter, we aim at training a simple network when it can achieve comparable
performance to the fully connected NN, but with number of neurons and connections
as few as possible. Dropping connections may be not difficult by introducing weight
decay regularisers. However, dropping neurons is challenging. On one hand, the
weight decay regularisation can’t penalise all the connections associated with one
neuron simultaneously. On the other hand, it is attempted to suppress the neurons to
fire such as the use of rectifier as activation function [66], regularisation techniques
like K-L sparsity in the sparse autoencoder variants [103, 20], or constraints like
max-norm [178, 67]. However, a neuron not firing in training still can’t be dropped
for testing and prediction since her connections’ weights are not zeros. As an
alternative, network pruning by dropping connections below a threshold has been
widely studied to compress a pre-trained fully connected NN models reduce the
network complexity and over-fitting, see early work [111, 78] and more recently
[75, 74]. Unfortunately, such pruning strategy may not effectively drop neurons.
For example, a NN may consist of large number of neurons but few connections.
Though, the model size/storage space may not be challenging but bring another
challenge for chip design for storage and computation, e.g. (mobile) GPU, FPGA,
etc.

We use the following notation throughout this Chapter. Bold lower case letters
(x) denote vectors, bold upper case letters (X) denote matrices, and standard weight
letters (x) denote scalar quantities. We use subscripts to denote variables as well Wℓ

(such as W1 : n0 × n1, W2 : n1 × n2). n0 is the number of features of the input. We
use subscripts to denote either entire rows (Wℓ

p,: for the p-th row of Wℓ) or entire
columns (Wℓ

:,q for the q-th column of Wℓ). We use the standard capital letter with
subscript to denote the element index of a specific variable: W 1

p,q denotes the element
at row p column q of the variable W1. We also use Oℓ to be the indicator for the
neurons in layer ℓ. For example, O0 consist of n0 neurons in the input layer, indexed
as O0

1, . . . , O0
n0 .

We start with the case of a three layer NN with a single hidden layer. The generali-
sation to multiple layers is straightforward. Denote by W1, W2 the weight matrices
connecting the first layer to the hidden layer and connecting the hidden layer to
the output layer respectively. These linearly transform the layers’ inputs before
applying some element-wise non-linearity σ(·). Denote by b the biases by which we

238 Future Direction

shift the input of the non-linearity. We assume the model to output n2 dimensional
vectors while its input is n0 dimensional vectors, with K hidden units. Thus W1 is a
n0 × n1 matrix, W2 is a n1 × n2 matrix, and b is a n1 dimensional vector. A standard
NN model would output the following given some input x

ŷ = σ(xW1 + b)W2 (14.1)

To use the NN model for regression we might use the Euclidean loss (also known
as “square loss”),

Eregression = 1
2N

N∑
n=1
||yn − ŷn||22 (14.2)

where {y1, . . . , yN} are N observed outputs, and {ŷ1, . . . , ŷN} being the outputs of
the model with corresponding observed inputs {x1, . . . , xN}.

To use the model for classification, predicting the probability of x being classified
with label 1, ..., D, we pass the output of the model ŷ through an element-wise
softmax function to obtain normalised scores: p̂nd = exp(ŷnd)/ (∑d′ exp(ŷnd′)). Taking
the log of this function results in a softmax loss,

Eclassification = − 1
N

N∑
n=1

log(p̂n,cn) (14.3)

where cn ∈ [1, 2, ..., D] is the observed class for input n.

During optimisation regularisation terms are often added. Some of the well
known regularisation include ℓ1 regularisation and ℓ2 regularisation, defined as

l1_regulariser ≜ λℓ1

L∑
ℓ=1

(∥Wℓ∥1 + ∥bℓ∥1)

l2_regulariser ≜ λℓ2

L∑
ℓ=1

(∥Wℓ∥2
2 + ∥bℓ∥2

2)
(14.4)

where λℓ1 and λℓ2 are often called weight decay or regularisation parameter which
needs fined tuned.

Then it results in a minimisation objective (often referred to as cost),

L ≜ E + l1_regulariser or L ≜ E + l2_regulariser, (14.5)

14.1 Future Direction I: Bayesian Deep Learning 239

or a mixture of l1_regulariser and l2_regulariser, which is known as elas-
tic net.

The goal of introducing l1_regulariser and l2_regulariser is to penalise
the connections’ weights between neurons to prevent overfitting. However, the
application of such regularisers alone in deep neural network are not as successful
as in linear regression and logistic regression. On the other hand, in the hardware
computation especially using GPU, dropping connections may not save computation
time and memory unless some special coding and processing is used [74]. The
introduction of dropout achieve great success to avoid over-fitting in practice [86,
180] with these two regularisers. These regularisation techniques are suitable for
preventing overfitting but may not be helpful in simplifying the NN structure. We
believe that the key to automatically simplify a NN structure in training is to define
proper regulariser by exploring the sparsity structure of the NN in a deep learning
system.

14.1.2 Structural Sparsity in Deep Neural Network

Multi Layer Perceptron

Hereafter, we are seeking a strategy to drop neurons. Using the standard setup for
NN, we have the weight matrix from layer ℓ− 1 to layer ℓ,

Wℓ =
[
(Wℓ

1,:)⊤, . . . , (Wℓ
nℓ−1,:)⊤

]⊤
=
[
Wℓ

:,1, . . . , Wℓ
:,nℓ

]
(14.6)

where Wℓ
i,: denote the i-th row of Wℓ, i = 1, . . . , nℓ−1; it encodes the incoming

connections’ weights from layer ℓ− 1 to the i-th neuron in layer ℓ, i.e., Oℓ
i . Similarly,

Wℓ
:,j denote the j-th column of Wℓ, j = 1, . . . , nℓ; it encodes the outgoing connections’

weights of the j-th neuron in layer ℓ, i.e., Oℓ
i to all the neurons in the next layer, i.e.,

layer ℓ + 1 . In particular, O0
i denotes the i-th feature/neuron in input layer.

We first introduce two new regularisers, the first one is called li_regulariser(λℓi
)

li_regulariser ≜ λℓi

L∑
ℓ=1

nℓ∑
j=1
∥Wℓ

:,j∥2 = λℓi

L∑
ℓ=1

nℓ∑
j=1

√√√√nℓ−1∑
i=1

(
W ℓ

ij

)2
(14.7)

This is used to regularise the incoming connections’ weights of all the neurons across
different layers over the whole network. The conceptual idea of removing all the
incoming weights to neuron Oℓ

1 from the neurons in layer ℓ− 1 therefore removal of
herself is illustrated by comparing in Fig. 14.1(a) and14.1(c).

240 Future Direction

La
ye
r	𝑙
−
1

Layer	𝑙

𝑊+,-./
0 𝑊+,-.1

0 𝑊+,-.+,
0

𝑊/+,
0𝑊//0

𝑊1/
0 𝑊11

0

𝑂/03/

𝑂103/

𝑂+,-.
03/

𝑂/0 𝑂10 𝑂+,
0

𝑊/10

𝑊1+,
0

(a) Wℓ ∈ Rnℓ−1×nℓ

from layer ℓ− 1 to layer ℓ

𝑊"#$
%&$ 𝑊"#'

%&$ 𝑊"#"#()
%&$

𝑊$"#()
%&$𝑊$$%&$

𝑊'$
%&$ 𝑊''

%&$

𝑂$%

𝑂'%

𝑂"#
%

𝑂$%&$ 𝑂'%&$ 𝑂"#()
%&$

𝑊$'%&$

𝑊'"#()
%&$

La
ye
r	𝑙

Layer	𝑙 + 1

(b) Wℓ+1 ∈ Rnℓ×nℓ+1
from layer ℓ to layer

ℓ + 1

La
ye
r	𝑙
−
1

Layer	𝑙

𝑊+,-./
0 𝑊+,-.1

0 𝑊+,-.+,
0

𝑊/+,
0𝑊//0

𝑊1/
0 𝑊11

0

𝑂/03/

𝑂103/

𝑂+,-.
03/

𝑂/0 𝑂10 𝑂+,
0

𝑊/10

𝑊1+,
0

(c) Wℓ ∈ Rnℓ−1×nℓ

from layer ℓ− 1 to layer ℓ

𝑊"#$
%&$ 𝑊"#'

%&$ 𝑊"#"#()
%&$

𝑊$"#()
%&$𝑊$$%&$

𝑊'$
%&$ 𝑊''

%&$

𝑂$%

𝑂'%

𝑂"#
%

𝑂$%&$ 𝑂'%&$ 𝑂"#()
%&$

𝑊$'%&$

𝑊'"#()
%&$

La
ye
r	𝑙

Layer	𝑙 + 1

(d) Wℓ+1 ∈ Rnℓ×nℓ+1
from layer ℓ to layer

ℓ + 1

Fig. 14.1 A graphical illustration on the strategy of removing neurons. Oℓ
k denotes the

k-th neuron in layer ℓ , W ℓ
ij denotes the weight of connection from neuron i in layer

ℓ to neuron j in layer ℓ + 1. The bottom figures showed a neuron can be removed
either when all incoming connections’ weights to her or her outgoing connections’
weights are zeros simultaneously.

The second one is called lo_regulariser(λℓo)

lo_regulariser ≜ λℓo

L∑
ℓ=1

nℓ−1∑
i=1
∥Wℓ

i,:∥2 = λℓo

L∑
ℓ=1

nℓ−1∑
i=1

√√√√√ nℓ∑
j=1

(
W ℓ

ij

)2
(14.8)

This is used to regularise the outgoing connections’ weights of all the neurons across
different layers over the whole network. The conceptual idea of removing all the
outgoing weights from neuron Oℓ

1 to the neurons in layer ℓ + 1 therefore removal
of herself is illustrated by comparing in Fig. 14.1(b) and 14.1(d). The key idea of

14.1 Future Direction I: Bayesian Deep Learning 241

introducing the two regularisers is to embed a dropping mechanism in a deep NN
training process. Such a dropping mechanism is guided by the two regularisers.

Convolutional Neural Network

In convolutional neural network, each filter consist of a couple of neurons, the idea
is to “drop” the filter thereafter a batch of neurons simultaneously. To integrate over
the filters, we reformulate the convolution as a linear operation – an inner-product
to be exact. Let Fkℓ ∈ Rh×w×Kℓ−1 for kℓ = 1, ..., Kℓ be the CNN’s filters with height h,
width w, and Kℓ−1 channels in the ℓ’th layer. The input to the layer is represented as
a 3 dimensional tensor x ∈ RHℓ−1×W ℓ−1×Kℓ−1 with height Hℓ−1, width W ℓ−1, and Kℓ−1

channels. Convolving the filters with the input with a given stride s is equivalent
to extracting patches from the input and performing a matrix product: we extract
h× w ×Kℓ−1 dimensional patches from the input with stride s and vectorise these.
Collecting the vectors in the rows of a matrix we obtain a new representation for our
input x ∈ Rn×hwKℓ−1 with n patches. The vectorised filters form the columns of the
weight matrix Wℓ ∈ RhwKℓ−1×Kℓ . The convolution operation is then equivalent to
the matrix product xWℓ ∈ Rn×Kℓ . The columns of the output can be re-arranged to a
3 dimensional tensor y ∈ RHℓ×W ℓ×Kℓ (since n = Hℓ ×W ℓ). Pooling can then be seen
as a non-linear operation on the matrix y.

Then we introduce a new regulariser over each filter

Kℓ∑
k=1
∥Wℓ

:,k∥2 (14.9)

The idea can be illustrated in Figure.14.2. Then we define the following regulariser
to drop filters in CNN

lcnn_regulariser ≜ λℓcnn

L∑
ℓ=1

Kℓ∑
k=1
∥Wℓ

:,k∥2 (14.10)

Or equivalently, we regularise the tensor directly. Suppose

Fkℓ ≜
[
fkℓ

x,y,z

]
∈ Rh×w×Kℓ−1

,

242 Future Direction

Fig. 14.2 A graphical illustration on the strategy of removing the filters in convolu-
tional neural networks

we have

lcnn_regulariser ≜ λℓcnn

L∑
ℓ=1

Kℓ∑
kℓ=1

√√√√√ h∑
x=1

w∑
y=1

Kℓ−1∑
z=1

(
fkℓ

x,y,z

)2
. (14.11)

Recurrent Neural Network

The RNN dynamics can be described using deterministic transitions from previous
to current hidden states. The deterministic state transition is a function

RNN : hl−1
t , hl

t−1 → hl
t.

For classical RNNs, this function is given by

hl
t = f(Tn,nhl−1

t + Tn,nhl
t−1), where f ∈ {sigm, tanh} .

Given an input sequence x = (x1, . . . , xT), a standard recurrent neural network
(RNN) computes the hidden vector sequence h = (h1, . . . , hT) and output vector
sequence y = (y1, . . . , yT) by iterating the following equations from t = 1 to T :

ht = H (Wxhxt + Whhht−1 + bh) (14.12)

yt = Whyht + by (14.13)

14.1 Future Direction I: Bayesian Deep Learning 243

�
��
ct

Cell

f×
�
��
f Forget gate
6

� 	

���hl
t−1

AAK hl−1
t

�
��
iInput

gate

AU

hl
t−1

���

hl−1
t

�
��
o Output

gate

AU

hl
t−1

���

hl−1
t

�
��
g

Input
modulation

gate

f× --

J
J
Ĵ f×- -? hl

thl
t−1

hl−1
t
��:
XXz

Fig. 14.3 A graphical representation of LSTM memory cells (there are minor differ-
ences in comparison to Graves [70]).

where the W terms denote weight matrices (e.g. Wxh is the input-hidden weight
matrix), the b terms denote bias vectors (e.g. bh is hidden bias vector) andH is the
hidden layer function.

The LSTM has complicated dynamics that allow it to easily “memorize” infor-
mation for an extended number of timesteps. The “long term” memory is stored in
a vector of memory cells cl

t ∈ Rn. Although many LSTM architectures that differ in
their connectivity structure and activation functions, all LSTM architectures have
explicit memory cells for storing information for long periods of time. The LSTM
can decide to overwrite the memory cell, retrieve it, or keep it for the next time step.
The LSTM architecture used in our experiments is given by the following equations
Graves [70]:

LSTM : hl−1
t , hl

t−1, cl
t−1 → hl

t, cl
t (14.14)

iℓ
t = sigm

(
Wℓ

xih
ℓ−1
t + Whih

ℓ
t−1 + Wℓ

cic
ℓ
t−1 + bℓ

i

)
(14.15)

f ℓ
t = sigm

(
Wℓ

xfhℓ−1
t + Wℓ

hfhℓ
t−1 + Wℓ

cfcℓ
t−1 + bℓ

f

)
(14.16)

oℓ
t = sigm

(
Wℓ

xoh
ℓ−1
t + Wℓ

hoh
ℓ
t−1 + Wℓ

coc
ℓ−1
t + bℓ

o

)
(14.17)

gℓ
t = tanh

(
Wℓ

xch
ℓ−1
t + Wℓ

hch
ℓ
t−1 + bℓ

c

)
(14.18)

cℓ
t = f ℓ

t ⊙ cℓ
t−1 + iℓ

t ⊙ gℓ
t (14.19)

hℓ
t = oℓ

t ⊙ tanh(cℓ
t) (14.20)

In these equations, sigm and tanh are applied element-wise. Figure 14.3 illustrates
the LSTM equations.

244 Future Direction

The idea of compressing recurrent neural networks is inspired from Model Reduc-
tion technique in Control Theory [238]. By a reduction of the model’s associated state
space dimension or degrees of freedom, an approximation to the original model is
computed. This reduced-order model can then be evaluated with lower accuracy
but in significantly less time. A schematic illustration is showed in Fig.14.4

Fig. 14.4 A graphical illustration on the model reduction technique in control theory

Drop States First, we try to regularise the number of hidden states. We first define
the following matrices

Wℓ
i =

[
Wℓ

xi Wℓ
hi Wℓ

ci bℓ
i

]
Wℓ

f =
[
Wℓ

xf Wℓ
hf Wℓ

cf bℓ
f

]
Wℓ

o =
[
Wℓ

xo Wℓ
ho Wℓ

co bℓ
o

]
Wℓ

c =
[
Wℓ

xc Wℓ
hc bℓ

c

]
(14.21)

and introduce a new term

n∑
i=1

∥∥∥[Wℓ
i [i, :] Wℓ

f [i, :] Wℓ
o [i, :] Wℓ

c [i, :]
]∥∥∥

2
(14.22)

This is used to regularise the neurons in iℓ
t , f ℓ

t , oℓ
t , gℓ

t respectively.

Then we concatenate the four matrices into a compact one

W =
[
Wℓ

i Wℓ
f Wℓ

o Wℓ
c

]
. (14.23)

14.1 Future Direction I: Bayesian Deep Learning 245

The new regulariser can be defined as follows

lrnn_state_regulariser ≜ λℓrnn

L∑
ℓ=1

n∑
i=1
∥Wℓ [i, :] ∥2. (14.24)

Drop Feedback Next, we try to regularise the incoming feedback from the states

Wℓ
x =


Wℓ

xi

Wℓ
xf

Wℓ
xo

Wℓ
xc

 , Wℓ
h =


Wℓ

hi

Wℓ
hf

Wℓ
ho

Wℓ
hc

 , Wℓ
c =


Wℓ

ci,

Wℓ
cf ,

Wℓ
co.

 . (14.25)

We then can introduce the new term for the neurons at layer ℓ

n∑
j=1

(
∥Wℓ

x [:, j] ∥2 + ∥Wℓ
h [:, j] ∥2 + ∥Wℓ

c [:, j] ∥2
)

. (14.26)

The three terms are used to regularise the neurons in hℓ−1
t , hℓ

t−1 and cℓ
t−1 respectively.

The new regulariser can be defined as follows

lrnn_feedback_regulariser ≜

λℓrnn

L∑
ℓ=1

n∑
j=1

(
∥Wℓ

x [:, j] ∥2 + ∥Wℓ
h [:, j] ∥2 + ∥Wℓ

c [:, j] ∥2
)

. (14.27)

14.1.3 Identifiability of Deep Neural Networks

The other challenging yet very important issue will be on the proof of identifiability
which is related to Section 5.1 in Chapter 5. Unfortunately, I have no theoretical clue
yet. From a practical point of view, the identified model never seems to be unique.
Counter examples to uniqueness can be found ubiquitously. However, from a quick
implementation using the proposal previously in Section 14.1.2, we proposed the
hypothesis that the sparsest deep neural network with fewest active neurons and
connection may be unique.

We started with a simple sparse linear regression problem which is a classic
problem in compressive sensing or sparse signal recovery. The inputs and outputs
were synthetically generated as follows. First, a random feature matrix Φ ∈ Rm×n,
often overcomplete, was created whose columns are each drawn uniformly from
the surface of the unit sphere in Rn. Next, sparse coefficient vectors x0 ∈ Rn are

246 Future Direction

randomly generated with d nonzero entries. Nonzero magnitudes x̄0 are drawn
i.i.d. from an experiment-dependent distribution. Signals are then computed as
y = Φx0 ∈ Rm, and then contaminated by adding noise ξ ∈ Rm with certain
distribution. i.e., y = Φx0 + ξ. In compressive sensing or sparse signal recovery
setting, several algorithms will be presented with y and Φ and attempts to estimate
x0. Such training can be formulated by a neural network where an extreme case
will be there is only one hidden layer and there is only one neuron on thin layer.
Minimisation of a cost function with mean square error as loss and ℓ1 as regulariser
over the weight will typically yield the exact solution if Φ satisfy conditions like
restricted isometry property.

Rather than using a single hidden layer and single neuron for training, we speci-
fied a multi-layer structure and there are more than one neurons in each layer. To be
simple, the activation function is assumed to be linear. Therefore, the training of x0 is
not the main concern under the deep neural network framework but the prediction
error for the test set is more interesting. In our experiment, the number of example
in training set and test set are the same. We used the standard normalised mean

square error (NMSE) metric , i.e. NMSE =
∑N

t=1(yt−ŷt)2∑N

t=1 y2
t

, to evaluate the prediction

accuracies of the models.

It seems that deep neural architecture with multiple layers and many neurons
is overly used for this simple example. It should be naturally expected that the
prediction error is as small as possible especially after adding regularisation tech-
nique such as Dropout. However, the results seems to be counter-intuitive while our
method yield impressive performance.

First of all, we set the number of features n to be 20 and there are 2 nonzero
elements in x0. Only one hidden layer is specified, with 5 neurons in this layer.
Therefore, W1 ∈ R20×5 and the output layer W2 ∈ R5 .After each layer, we applied
Dropout with a keeping probability of 50%. The number of example was set to be
1000 (half for training and half for testing) which is much greater than the number
of unknown weight (20 × 5 + 5 = 105). The setup of experiment was as follows:
optimizer: AdamOptimizer; number of epochs: 100; learning rate: 0.001; batch size:
1; dropout keep probability : 50%.

In all cases, we ran 1000 independent trials to generate different feature matrix
and output. As an illustration, we show the training result in one trial where the
prediction NMSE using Dropout is the lowest among all the trials. In this trail, the
spare vector x0 = [0, 0, 3.87308349, 0, 0, 0, 0, 0, 0,−8.23781791, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
where the 3rd and 10th entries are nonzeros. The estimated weights using Dropout

14.1 Future Direction I: Bayesian Deep Learning 247

are shown below, both W1 in (14.28) and W2 in (14.29) are not sparse and implying
a fully connected architecture. The test NMSE is around 0.54.

W1
Dropout =



0 0 0 −0.01453323 0.06075698
−0.05635324 0 −0.02587643 0.02911515 −0.01041718
0.02563882 0.05031364 0.03376988 0.01993434 −0.03179494
0.06203449 0.02862295 −0.06700613 0.02385385 −0.02911432
−0.48254526 −0.35333461 0.31129083 0.3545627 −0.31979144
0.03181251 −0.07274029 0.05249952 0.04767575 −0.02953613
0.04364435 0 −0.03578129 −0.03502097 0.09711245
−0.04102893 −0.06275055 0 −0.06409876 −0.05218389

0.0200471 0.06717232 0 0.02837713 0.03758603
−0.03055474 0.0289463 0.06301561 0.03308195 0.01662179
−0.02746344 0.07223324 0.04476647 0.01322776 0.04655014
−0.01112585 0 −0.037157 −0.03381626 0.02151454
0.04563131 −0.03387317 −0.04606552 0 0.01086553
0.03301461 −0.02328412 0.0114607 −0.01552058 0
−2.000736 −1.94960344 2.02926755 1.93757319 −1.96851373
−0.05102381 0.02301042 −0.07785907 0.01081117 0.0626013
0.02743321 0.03834696 0.06928469 0 0
−0.04644512 0. −0.01497171 0.02810199 0

0.0628076 0.04429785 0.01758143 0.01070064 −0.02718436
0 0 −0.0419367 0.06928124 −0.05641071


(14.28)

W2
Dropout =



−0.10229997
−0.11288397
0.11892998
0.12453081
−0.11404949


(14.29)

Using the same data, the training result using DropNeuron can be found below,
both W1 in (14.30) and W2 in (14.31) are very sparse. In W1, only two non zeros
weights are found, they are W 1

3,2 = −0.6687693 and W 1
10,2 = 1.42591035; and in W2,

there is only one nonzero entry W2
2 = −5.74600601. The test NMSE is surprisingly

low at around 0.00036.

248 Future Direction

W1
DropNeuron =



0 0 0 0 0
0 0 0 0 0
0 −0.6687693 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1.42591035 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(14.30)

W2
DropNeuron =



0
−5.74600601

0
0
0


(14.31)

It is a fact that the only two nonzero entries of W1 both appear in the second
column of W1. This means that only the second neuron in the hidden layer is
necessary to be kept while dropping all the other neurons. Similarly, the second
neuron in the output layer is necessary to exist. Meanwhile, we notice that W 1

3,2 ×
W 2

2 = (−0.6687693)× (−5.74600601) = 3.8427524171 and W 1
10,2×W 2

2 = 1.42591035×
(−5.74600601) = −8.19328944082, which are very close to the nonzero entry in x0 =
[0, 0, 3.87308349, 0, 0, 0, 0, 0, 0,−8.23781791, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. If we investigate
the structure of (14.30) and (14.31) again, and consider the effect of linear activation
function, the estimated network architecture by dropping unnecessary neurons
almost reveal the true additive structure of the third and tenth feature. A conceptual

14.1 Future Direction I: Bayesian Deep Learning 249

(a) Full size model (b) Drop Neurons (c) Drop Connec-
tions

(d) Small size NN

Fig. 14.5 A graphical illustration of DropNeuron strategy in regression problem

Table 14.1 Summary of statistics for Sparse Regression

Regularisation WFC1% WFC2% Wtotal% NMSE NMSE (no prune)
ℓ1+P 58% 100% 60% 0.54 0.54
ℓ1+DN+P 16.00% 44.47% 54.11% 0.00036 0.00036
Regularisation Oinput% OFC1% Ooutput% Ototal% Compression Rate
ℓ1+P 20

20 = 100% 5
5 = 100% 1

1 = 100% 26
26 = 100% 1.67

ℓ1+DN+P 2
20 = 10% 1

5 = 20% 1
1 = 100% 4

26 = 15.38% 35

illustration for the strategy of dropping neurons for the regression problem can be
found in Fig. 14.5.

14.1.4 Training Bayesian Deep Neural Network with Structural
Sparsity

Motivated from Algorithm 9, an Algorithm on training Bayesian deep neural net-
work with structural sparsity can be intuitively summarised in the following. Due
to space limitation, we split the Algorithm into two parts: Algorithm 21 and Algo-
rithm 22. The former one is the initialisation for the latter.

Remark 27 It should be mentioned again this algorithm is purely from intuition without
guarantee either theoretically or experimentally. Nevertheless, it is by no means compatible
with the classic backpropagation.

250 Future Direction

Algorithm 21 Initialisation for Algorithm 22

1: Cache symbolically the likelihood, loss function and its gradient over Wl at each
layer l (on a tensor graph)

Likelihood: p(y|W, θ) = a(θ) · exp{−E(W, θ)}

Loss function: f(W, γ, θ) = E(W, θ) + λ
L∑

l=1
W⊤

l B⊤
l Γ−1

l BlWl

Gradient function: g̃l(W, γ, θ) = ∇Wl
f(W, γ, θ) using Backgropagation

where we fix λ = 1 or select λ ∈ R+ as trail and error which may be empirically
helpful;

2: Initialise the unknown hyperparameter γl, i.e., γ1
l , as an arbitrary positive vector

such as unit vector;
3: Fix/given the known parameter of the exponential family θ = θ∗;
4: Initialise the Hessian matrix H̃1,1

l as an arbitrary positive definite matrix such as
Identity I or be calculated explicitly with∇∇Wf(W, γ, θ) given W1,1 and θ∗;

5: Set epochswtich as a natural number to switch from Gradient Descent method to
Quasi-Newton method;

• For simplicity, B is assumed to be identity matrix. The key difference with classic
backpropagation lies in line 13 to 27. If this part is removed, the algorithm downgraded
to the typical backpropagation using stochastic gradient descent or/and quasi-Newton
method.

• Similar to prior specification and algorithmic manipulation in Chapter 6 and 7, the B
matrix can be defined structurally as well. It is particularly promising for modelling
sequence data such as time series data using recurrent neural network.

• The Bayesian theoretic grounded explanation could quantify the parameter and predic-
tion uncertainty which will be potentially important for decision making.

14.1.5 Implementation on Mobile Device Chips

Convolutional neural networks (CNNs) have shown reliable results on real-world
applications such as image classification [108, 184, 80] and object detection [65, 161]
given adequate computing and memory resources. Concurrent to these progresses,
the deployment of CNNs on mobile devices is gaining more and more attention
[102, 220, 57]. One of the most critical issues in mobile applications of CNNs is
that mobile devices have strict constraints in terms of computing power, battery,

14.1 Future Direction I: Bayesian Deep Learning 251

Algorithm 22 Training Bayesian Deep Neural Network with Structural Sparsity

1: Execute Algorithm 21 for initialisation;
2: for epoch = 1, . . . , epochmax do
3: Gradient Descent method update for backpropagation, e.g., SGD, ADAM,

etc;
4: for τ = 1, . . . , τmax do
5: for l = 1, . . . , L do
6: Choose fixed step size α̂

epoch,τ
l or via line search under Wolfe condition;

7: ∆Wepoch,τ
l = −α̂

epoch,τ
l g̃l(Wepoch,τ

l , γ
epoch
l , θ∗);

8: Wepoch,τ+1
l = Wepoch,τ̃

l + ∆Wepoch,τ̃
l ;

9: end for
10: end for
11: if epoch > epochswtich then
12: Switch to Quasi-Newton method update for backpropagation, e.g. L-

BFGS;
13: for τ̃ = 1, . . . , τ̃max do
14: for l = 1, . . . , L do
15: Fix step size α̃

epoch,τ
l or line search under Wolfe condition;

16: ∆Wepoch,τ̃+τmax
l = −α̃

epoch,τ̃
l (H̃epoch,τ̃

l)−1g̃l(Wepoch,τ̃+τmax
l , γ

epoch
l , θ∗);

17: Wepoch,τ̃+τmax+1
l = Wepoch,τ̃+τmax

l + ∆Wepoch,τ̃+τmax
l ;

18: Compute the new gradient g̃l(Wepoch,τ̃+τmax+1
l , γ

epoch
l , θ∗);

19: y
epoch,τ̃
l = g̃l(W

epoch,τ̃+τmax+1
l , γ

epoch
l , θ∗)− g̃l(W

epoch,τ̃+τmax
l , γ

epoch
l , θ∗);

20: Approximate H̃epoch,τ̃+1
l using y

epoch,τ̃
l , ∆Wepoch,τ̃+τmax

l , H̃epoch,τ̃
l ;

21: Approximate (H̃epoch,τ̃+1
l)−1 using y

epoch,τ̃
l , ∆Wepoch,τ̃+τmax

l , H̃epoch,τ̃
l ;

22: end for
23: end for
24: Cepoch

l =
(
H̃l(Wepoch,τmax+τ̃max , θ∗)

)−1
;

25: αl
epoch+1
i = −Bli,:CepochBl

⊤
i,:

(γl
epoch
i)2 + 1

γl
epoch
i

;

26: Wepoch+1
l = Wepoch,τ̃max

l ;

27: γl
epoch+1
i = |Bli,:Wepoch+1|√

αl
epoch+1
i

, Γkepoch+1
l = diag(γepoch+1

l)

28: end if
29: if a stopping criterion is satisfied then
30: Break;
31: end if
32: end for

252 Future Direction

and memory capacity. Thus, it is imperative to obtain CNNs tailored to the limited
resources of mobile devices.

On mobile applications, it is typically assumed that training is performed on
the server and test or inference is executed on the mobile devices [41, 57]. To im-
prove test-time performance on mobile devices, a line of recent research efforts
have focused on binarising/quantising CNNs. Courbariaux et al. [41] introduce
neural networks with binary weights and activations at run-time, which they call
binarised neural networks (BNNs). Rastegari et al. [159] propose two efficient ap-
proximations to standard convolutional neural networks: Binary-Weight-Networks
and XNOR-Networks, where the former one binarizes weights and the latter one
binarizes both weights and activations. Zhou et al. [239] propose DoReFa-Net, which
trains convolutional neural networks that not only have low bitwidth weights and
activations, but also using low bitwidth parameter gradients. During the forward
pass, these network architectures drastically reduce memory size and accesses, and
replace most arithmetic operations with bitwise operations, which is expected to
substantially improve power-efficiency. Semiconductor manufacturers like IBM [57]
and Intel [204, 237] have been involved in the research and development of related
chips. However, these works usually cause severe prediction accuracy degradation
when quantising weights and activations to less than 4-bit numbers, especially on
complex tasks such as classification on CIFAR-100 or ImageNet.

Related Work

Quantized Neural Networks: High precision parameters are not very important in
achieving high performance in deep networks. Recent research efforts [39, 91, 237]
have considerably reduced computaion complexity by using low bitwidth weights
and low bitwidth activations. Zhou et al. [239] further generalized these schemes and
proposed to train CNNs with low bitwidth gradients. Their method, called DoReFa-
Net, perform well when bitwidth is larger than 4. However, with a smaller bitwidth,
the performance of their highly quantized networks (e.g.,binarised) deteriorates
rapidly due to the destructive property of binary quantization. In fact, Hubara
et al. [91] experiments with different combinations of bit-widths for weights and
activations, and shows 4-bit quantized CNN can achieve comparable accuracy as
their 32-bit counterpart. However, large performance degradation occurs when
quantising weights and activations to 2-bit numbers.

Binarised/Ternarized Neural Networks: The binary representation for deep
models is not a new topic. At the very beginning of neural network, inspired biolog-

14.1 Future Direction I: Bayesian Deep Learning 253

ically, the unit step function has been used as the activation function [194, 17]. It has
been known that binary activation can use spiking response to provide event-based
computation and communication (consuming energy only when necessary) and
therefore is energy-efficient [57]. Recently, Courbariaux et al. introduce Binarised-
Neural-Networks (BNNs) [41, 40], neural networks with binary weights and acti-
vations at run-time. Different from Courbariaux et al.’s work, Rastegari et al. [159]
introduce simple, efficient, and accurate approximations to CNNs by binarising the
weights and even the intermediate representations in CNNs. Their binarization
method aims at finding the best approximations of the convolutions using binary
operations. Esser et al. [57] ternarize CNNs and implement them on IBM TrueNorth
chip. All these works drastically reduce memory consumption, and replace most
arithmetic operations with bitwise operations, which potentially lead to a substantial
increase in power-efficiency.

Proposed Strategy

A potential strategy is proposed to introduce sparsity into the network architecture.
The weight-values and activations of CNNs are ternary ({−1, 0, +1}) and binary
({0, +1}) respectively, which means convolutions can be implemented by only ad-
dition, subtraction (without multiplication) and dropping the connections whose
weight values are zeros. We further introduce a kernel regularizer to intensify the
neuron sparsity during the training process. We demonstrate that moderate sparsity
leads to only mild accuracy degration while requiring a significantly less memory
and fewer connections.

254 Future Direction

14.2 Future Direction II: Decision Making in Neuro-
science

14.2.1 Cognitive Design Principles for Real-Time Decision Mak-
ing using Neural Big Data

Decision making is pervasive in nature. It occurs whenever an animal makes a
choice from several alternatives on the basis of a subjective value that it places on
them. For a long time, this study has been axiomatic, addressing the question of
“How should one choose when faced with uncertain outcomes?”

For a large part of the 20th century, research on human choice was dominated
by economic theories, particularly rational choice and revealed preferences theories.
This approach starts from a limited set of properties that are imposed on choices
(rationality axioms). It then determines to what extent choices can be represented
by the maximisation of some latent mathematical function, typically referred to as
the utility or value function [205]. This led to the development of utility theory, more
specifically, expected utility theory and mean-variance analysis (portfolio analysis).
Apart from theoretical development, behavioural finance also starts from choice,
but it rejects the idea that choice reflects the maximisation of a rational (expected)
utility function. Instead it places emphasis on one important feature common to
the axiomatic approach: the agent chooses “as if” maximising utility. But how can
we determine where choice really comes from? Or more specifically, was there any
biological foundation to the economic theories of choice? Which neural circuity
was involved? What algorithms were employed? Recent advances in neuroscience
technology are enabling a deeper understanding of the cognitive processes involved
in decision making. Nowadays, neuroscience measurements allow us to capture
data underpinning the entire process of decision making, from initial perception of
a “stimulus” (which conveys new information and/or new investment options), to
valuation and motivation, and the very act of choosing. Some fascinating results
provide supporting evidence, including the discovery of, and subsequently, ability to
manipulate, the very value of (utility) signals that constitute the core of the axiomatic
theory [155, 133, 154, 60]. So far, neurobiology only played a supporting role in
the quest for a better understanding of human behaviour in investment decision
making, helping to differentiate between existing valuation models, or elucidating
the biophysical mechanics and implementation algorithms behind human economic
decision making. However, in recent years evidence has emerged that there is

14.2 Future Direction II: Decision Making in Neuroscience 255

significant neurobiological variation that does not map into parametric variation of
even the best economic models [149, 64, 168, 164]. Such neurobiological variation
could be used to identify potential behavioural variation that would be otherwise
missed if one were to follow economic theory alone. Investigating the neural basis of
the decision making under uncertainty will not only provide a mechanistic account
of human decision-making but also provide some of the foundations for theories
of human behaviour. We will combine whole-brain functional neuroimaging, with
functional magnetic resonance imaging (fMRI), electroencephalography (EEG), eye-
tracking, and mathematical models to study the neural basis of the human decision
making process under various conditions.

14.2.2 Background

(Sub)cortical network provides evidence for understanding neural basis in deci-
sion making

Different valuation systems map to different networks In the computations in-
volved in making a choice, behaviour can be driven by different valuation systems.
These systems can operate in the domain of rewards (that is, appetitive outcomes)
and punishments (that is, aversive outcomes). Although the exact nature and num-
ber of valuation systems is still being debated, conceptually the Pavlovian, habitual
and goal-directed systems provide a useful operational division of the valuation
problem according to the style of the computations that are performed by each.
More and more evidence is showing that the neural basis of these three distinct
valuation systems is established on the complex connectivity among (sub)cortical
areas rather than specific area alone. In Pavlovian systems, a network that includes
the basolateral amygdala, the ventral striatum and the orbitofrontal cortex underlie
the learning processes through which neutral stimuli become predictive of the value
of outcomes [33, 88]. Specifically, the central nucleus of the amygdala, through its
connections to the brainstem nuclei and the core of the nucleus accumbens, seems to
be involved in nonspecific preparatory responses, whereas the basolateral complex
of the amygdala seems to be involved in more specific responses through its con-
nections to the hypothalamus and the periaqueductal grey. In contrast to Pavlovian
systems, which value only a small set of responses, habit systems can learn to assign
values to stimulus-response associations (which indicate the action that should be
taken in a particular state of the world) on the basis of previous experience, through
a process of trial-and-error. Studies using several species and methods suggest that

256 Future Direction

the dorsolateral striatum might play a crucial part in the control of habits [14, 221].
Furthermore, it has been suggested that stimulus-response representations might
be encoded in cortico-thalamic loops [221]. Finally, in contrast to the habit system,
goal-directed systems assigns values to actions by computing action-outcome as-
sociations and then evaluating the rewards that are associated with the different
outcomes. Several lines of evidence from these various methods also point to an
involvement of the basolateral amygdala and the mediodorsal thalamus (which, in
combination with the dorsolateral prefrontal cortex, form a network that Balleine
has called the “associative cortico-basal-ganglia loop” [14]).

Modelling and analysis from a control-theoretic perspective

There are two main features of these brain networks related to valuation, especially
in the sense of control theory: (a) the networks are dynamical systems, that is, the
(hidden) neuronal dynamics are evolving over time; (b) the networks are causal,
that is, dynamics in one neuronal population influence the dynamics in another and
these interactions can be modulated by experimental manipulations or endogenous
brain activity. In the view of these characteristics, the best option is to use a control-
theoretic approach to model and analyse the neuronal dynamics.

Mathematical modelling. System Identification is the term used in the Control
Community for the area of constructing mathematical models of dynamical systems
from measured input/output signals [117]. Theories and methodologies for such
model construction have been developed in many different research communities
(to some extent independently). For example, the term Machine Learning has become
very common in recent years. In the cognitive neuroscience community, Dynamic
Causal Modelling (DCM), which is used to model brain responses and provides es-
timates of neurobiologically interpretable quantities such as the effective strength
of synaptic connections among neuronal populations and their context-dependent
modulation, has gradually become part of mainstream neuroimaging analysis tech-
niques [99]. In the seminal paper by Prof. K. Friston et al. [99], DCM was firstly
introduced as “a fairly standard nonlinear system identification procedure using
Bayesian estimation of the parameters of deterministic input-state-output dynamic
systems”. Its applications cover a wide range of domains in cognitive neuroscience,
including language, motor processes, vision and visual attention, memory, percep-
tual decision making, and learning.

Analysis. The design of feedback control strategies is the main subject of control
theory and engineering which has been instrumental for the efficient and safe op-

14.2 Future Direction II: Decision Making in Neuroscience 257

eration of a plethora of technological devices. Control theory and engineering has
also started to provide important tools useful in various biological applications. One
important example is the discovery of negative feedback and oscillator motifs, which
encode control strategies for stabilisation and synchronisation of systems respec-
tively, from bacterial gene networks to C. elegans neuronal networks [4]. DCM has
been using (linear or nonlinear) differential equations for describing (hidden) neu-
ronal dynamics. In this work, we propose to extend DCM into a framework allowing
researchers to elucidate control strategies or design principles in neuroscience.

Discovery of the neural basis using whole-brain functional neuroimaging dy-
namics

What is the neural basis of decision-making and how are decisions implemented in
the human brain? This question is hard to address in humans, because opportunities
to record the activity of single human neural cells are extremely limited. Typically,
instead of single neuron time series data whole-brain functional neuroimaging,
together with functional magnetic resonance imaging (fMRI) and electroencephalog-
raphy (EEG) are used. These tools are used for two reasons. Firstly, they allow us to
test predictions about the brain regions involved in a given task and their interac-
tions. Secondly, these methods allow us to validate our computational models, since
we can test whether quantities that are computed by specific models (such as choice
value or prediction error signals) can be observed in human participants performing
the task in the scanner.

It also should be noted that DCM was introduced in 2003 for fMRI data [99] and
made available as open-source software within the Statistical Parametric Mapping
(SPM) software. The mathematical basis and implementation of DCM for fMRI have
since been refined and extended repeatedly. DCM have also been implemented for
EEG and MEG as well [47, 100].

Links between subject measures and cognitive behaviour

More and more evidence has shown that there are correlations between subject
measures and cognitive behaviour, beyond the decision making process. Subject
measures include one or more of the followings: demographics (age, sex, income,
education level, drug use, etc.), psychometrics (IQ, language performance, etc.) and
other behavioural measures such as ‘rule-breaking behaviour’. In a recent pub-
lished study in Nature Neuroscience [174], relationships between individual subjects’

258 Future Direction

functional connectomes and 280 behavioural and demographic measures were in-
vestigated relating imaging to non-imaging data from 461 subjects in the Human
Connectome Project. The study suggested that there is a link between a specific
pattern of brain connectivity and the demographic and psychometric measures.

Another interesting and important measure is the eye movement (blink fre-
quency, blink duration, fixation frequency, fixation duration, pupil diameter, and
horizontal vergence). Advertisers use data about where human subjects look and
when to better capture attention visually. Designers employ it to improve products.
Game and phone developers utilise it to offer the latest in hands-free interaction.
Years of research have found that our tiny, rapid eye movements called saccades
serve as a window into the brain for psychologists as well as for advertisers. Sac-
cades can be used to elucidate our inner mental and neurological disorders, such as
autism, attention-deficit hyperactivity disorder, Parkinson’s disease, etc. [199]. In
[106, 107], the research suggests that eye-fixations actually guide the comparison pro-
cess. Using eye-tracking, they have shown that a simple extension of drift-diffusion
models popular in psychology, which allows for the integration process to be biased
towards the item being fixated, is able to explain the psychometric and eye-tracking
data with remarkable quantitative and qualitative procession.

14.2.3 Hypothesis and Objectives

Hypotheses

Subject variations in human decision making are determined by brain networks
connectivity variations. Such biological variations can be reflected by the subject
measures variations. The Human Connectome Project shows that the brain network
connectivity can be explained by functional neuroimaging data, such as fMRI, EEG,
etc. In this project, we will test the possibility of inferring brain networks connectivity
variations from the large amount of functional neuroimaging and eye movement
data.

General objectives

The main objectives of this project are:

• O1. Development of generic theoretical approaches and algorithms for infer-
ring brain effective connectivity using functional neuroimaging data.

14.2 Future Direction II: Decision Making in Neuroscience 259

• O2. Application of these methods to discover the neural basis underlying
decision making process, e.g., computation of values in simple choice.

• O3. Design and implementation of easy-to-use software packages that imple-
ment the developed methods and minimise the level of expertise needed for
their use.

14.2.4 Problems and Plan

Overview

Our broad strategy is to model the dynamics of data obtained from fMRI, EEG,
eye-tracking combined with psychophysical test to study the neurobiological basis
of decision making. This will be realised through a series of packages (P). In P 1,
we will collect functional neuroimaging data, i.e., fMRI and EEG, as well as eye
movement data while the subject is performing psychophysical tasks. From P 2 to P
4, we will develop the theoretical tools and algorithms for data processing, dynamic
modelling and model analysis. In P 5, we will engineer the developed algorithms
based on an Apache Spark™ framework. In P 6, we will use deep learning to infer
relationships between subject measures and dynamical neural networks.

P 1: Experiment design, data collection and case study

There are several research groups studying how the human brain makes decision
using a combination of behavioural studies, eye-tracking, EEG, fMRI and mathemat-
ical model. Most of their studies are focusing on certain brain areas instead of on
dynamical neural networks. Furthermore, these neuroimaging tools are mainly used
to identify where in the brain such functions are located, rather than to characterise
how a particular cognitive function is implemented in the brain. Nevertheless,
these approaches and the associated discoveries provide valuable and insightful
knowledge. In particular, the behaviour and psychophysics experiment design is
a key first step. Decision making behaviour experiment is primarily carried out in
the visual domain. Participants are typically asked to see faint, grainy images and
asked to either detect whether a ‘signal’ (typically an oriented pattern) is present or
absent with manual button presses, sometimes recording eye movements as well.
The Rangel Group at Caltech and the Bossaerts Group at Melbourn also share the
stimulus set to facilitate future experiment replication.

260 Future Direction

A potential starting point is to repeat these psychophysics experiments, however,
with measuring the whole-brain functional neuroimaging dynamics simultaneously.
However considering the financial and time cost, such exhaustive replication is
implausible. A recent publication by Larsen and O’Doherty [110] demonstrated the
use of a combined EEG and fMRI approach during a simple binary choice task to
study the temporal aspects of valuation and choice in humans. The results speak
to the time course of engagement of different brain areas, with an initial recruit-
ment of posterior cortical areas, and a successive shift during choice processes to
more anterior areas. The fact that additional signals emerged later in time in the
dorsomedial prefrontal cortex suggests that this area might support post-decision
action-selection rather than decision per se. These discoveries illuminated on the
temporal dynamics of decision-making in the brain, suggested a distributed archi-
tecture for valuation in a highly coordinated way. In another simple binary choice
task, eye-tracking experiments were carried out to characterise the properties of
the value comparison process so as to select the best options in making a choice.
Their research results suggested that eye-fixations actually guide the comparison
process when the subjects looked back and forth between options in order to make
a choice, long after the identity of the options was known [106]. Similar results
were discovered for three choices task [107]. It is known that eye fixation is part of
visual attention and generated by the participation of many brain areas including
most of the early visual processing area [94]. Visual information enters the primary
visual cortex via the lateral geniculate to the superior colliculus. From there, visual
information progresses along two parallel hierarchical streams, ‘dorsal stream’ and
‘ventral stream’. Not surprisingly, these areas are greatly overlapping with the ones
in decision making. A integrative, systems-level investigation into the complex
wiring of potential effective brain areas may help answer the question: where and
how values are compared in order to make a choice.

P 1.1 In this work package, we plan to repeat the behaviour and eye tracking
experiments in [106, 107]. EEG and fMRI data will be simultaneously recorded and
pre-processed using standard software, e.g. [110]. The functional neuroimaging data
acquisition procedure is standard but highly technical. These experiments will be
implemented through a collaboration with related research groups where the 512
Hz EEG data were acquired using a XYZ1™ 128+2 channel cap system with eight
flat-type active electrodes (six facials, two mcastoids). At the start of each recording
session, each connection was stable with offsets within a ±25 mV range. Data were
recorded unreferenced and unfiltered with ACTIVIEW software. The fMRI data

14.2 Future Direction II: Decision Making in Neuroscience 261

were acquired using a XYZ2™ a 3T scanner. Scan parameters were optimized to
obtain robust signals in vmPFC, but also to allow whole brain coverage: 45 slices
recorded at a 30◦ angle, repetition time (TR) = 2 s, echo time (TE) = 28 ms, voxel size
3× 3× 3.35 mm, 440 volumes for each of the three experimental sessions. In addition,
a 1 mm isotropic T1-weighted structural scan was acquired for each participant to
enable localization of the activations.

P 1.2 In this work package, single-channel EEG will be recorded along with
multi-channel EEG as described in P 1.1. It is known that single-channel EEG is far
more easy to popularise in home based application compared with multi-channel
EEG. However, one of the major disadvantages of single-channel EEG lies in the
limited amount of information it can acquire compared with multi-channel EEG.
These problems limit the application of single-channel EEG. In order to overcome
the low dimensionality difficulty of single-channel EEG data, EEG data will be
recorded simultaneously using multi-channel EEG and single-channel EEG from
the same subject, and inferring label/features from multi-channel EEG data. Such
labels/features will be introduced in P 6. This will allow us to apply the knowledge
obtained from multi-channel EEG by observing single-channel EEG only.

P 2: EEG subcortical source localisation

While there is a growing body of fMRI evidence implicating a corpus of brain
regions in value-based decision-making in humans, the limited temporal resolution
of fMRI cannot address the relative temporal precedence of different brain regions
in decision-making. To address this question, EEG data is our main concern for
modelling purpose. fMRI data were also acquired from the same participants for
source localisation as in [110].

EEG measures the potential differences on the scalp yielded by volume currents
within the brain. It means the current sources responsible for the electromagnetic
activity are inside the brain and, therefore, hidden. In other words, the location
and magnitude of the current sources needs to be estimated from measurement. In
this project, such inverse problem, termed as brain source reconstruction, will be
addressed. More specifically, we will use a large number of fixed dipoles that fill
the search space (the grey matter surface for example) and estimate their amplitude
[45]. The solution is based on the linear mapping between the dipole moments
for a fixed set of dipoles distributed inside the brain and a set of signals recorded
by electrodes/gradiometers placed outside the head. This relation is given by

262 Future Direction

Y = LJ + ϵ where the sources J are mapped to channels through the subject-specific
leadfield matrix L, with data Y and noise ϵ [45].

There are three facts associated with this work package regarding the data ob-
tained in P 1. First, prior knowledge needs to be incorporated, e.g., different smooth-
ing functions, medical knowledge, fMRI priors [63]. Second, as previously pointed
out in the Background section, many functional brain areas related to decision mak-
ing are located in the subcortical region. Therefore, a more complex head model is
needed to cover this region, e.g., head models based finite element model instead of
the canonical single shell head model, which is extensively used for simulations and
provided with the SPM toolbox. Complex head models introduce more unknown
sources locations, i.e., equivalent current dipole. It means the column size is much
greater than the row size of the leadfield matrix L, which makes the inverse problem
ill-posed. Third, when data from different subjects are grouped together for mix-
effect regression, the size of the data will grow [83]. The consequence of the second
and third fact is the introduction of a large leadfield matrix in both dimensions.

Method In the view of the first fact, the best option is to use Variational Bayesian
scheme with the Free Energy as a cost function. It allows one to implement most
popular EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same
generic Bayesian framework. It also provides a cost-function in terms of the varia-
tional Free energy - an approximation to the marginal likelihood or evidence of the
solution. The key ingredient is the specification of the prior covariance of source
activity. This prior covariance accommodates the basic distinctions between com-
monly employed regularisation schemes in the source reconstruction literature, and
is generalised by the use of multiple and sparse spatial priors. However, the second
and third challenge may become a bottleneck for the application of the Bayesian
inversion scheme. The update rules for the hyperparameters depend on computing
the posterior weight covariance matrix, which requires an inverse operation (in
fact, Cholesky decomposition) of order O(M3) in complexity and O(M2) in memory
storage, with M the number of free parameters. Meanwhile for large data sets, with
computation scaling approximately in O(N3), with N the number of observations,
the algorithm becomes prohibitively expensive to run. Since the same variational
Bayesian approach will also be applied in the nonlinear system identification algo-
rithm (e.g., DCM), the details of a potential solution will be introduced in the next
work package.

14.2 Future Direction II: Decision Making in Neuroscience 263

P 3: Development of automatic nonlinear system identification algorithms for
big data and big networks

As described in the Background section, DCM seems to offer the best theoretical ap-
proach to address the dynamical modelling or system identification problem. How-
ever, it may not be the appropriate tool for the modern functional neuroimaging data
and brain network from several aspects. There are three key features/challenges of
such time series data, i.e., high dimensionality (‘big data’), large scale (‘big network’)
and nonlinearity. The dimensionality, or the complexity, grows with the sample
size, and “ultra-high” refers to the case where the dimensionality increases at a
more-than-polynomial rate. Scale, or size, refers to the dimension of the system,
i.e., the number of state variables. Though large network discovery using DCM
has been considered, Since DCMs are Bayesian in all aspects, i.e., each parameter
is constrained by a prior distribution and Bayesian inversion not only provides
posterior densities for each model parameter but also yields an approximation to the
log model evidence, the ‘cubic complexity’ facts exist in DCM as well. Meanwhile,
as pointed out in [99], “a further extension would be to go beyond bilinear approxi-
mations to allow for interactions among the states”. However, such extension is not
trivial since additional model structures, particularly nonlinear structures, would
need to be introduced. Furthermore, the number of Bayesian model selection will
grow exponentially with the number of candidate model structures. Traditionally,
proposal for a candidate hypothetical model structure needs careful tuning and
deep domain knowledge about the brain system under study, in order to reduce the
model search space. However, unlike linear structure, the possibility of nonlinear
structure can be huge. These challenges associated with DCM yield a need for the
development of automatic nonlinear system identification algorithms for big data
and big network.

Method In [135], W. Pan derived a repository of nonlinear system identification
algorithms using a Empirical Bayesian framework. By analysing the log-evidence
cost function, the cost function can be reformulated as a nonconvex cost function in
both parameter and hyper-parameter space. Thus, a convex-concave procedure can
be carried out iteratively. It leads to a series of iterative reweighted convex relaxation
schemes for connecting these algorithms to popular algorithms including Lasso,
Group-Lasso, Generalised-Lasso, Fused-Lasso and Graphical-Lasso. The Alternating
Direction Method of Multipliers [27] framework can be seamlessly integrated as a
distributed optimisation strategy to address high dimensionality and large scale

264 Future Direction

problems. As a by-product, the source localisation problem in P 2 can be addressed
using the same set of algorithms.

P 4: Analysis of dynamical system using system control theory

In this work package, we plan to do a holistic analysis on the dynamical model
obtained from P 3 using mathematical tools from control theory. Once the dynamical
model is obtained, many of the natural control-theoretic questions that one would
normally pose for such a system are precisely those that leading neuroscientists are
asking, if sometimes in a different language: What is special about the information-
processing capabilities, or input/output behaviours, of such networks, and how
does one characterise these behaviours? How does one estimate time-varying
internal states, such as the concentrations of proteins and other chemical substances,
from input/output experiments (observer problem)? What subsystems appear
repeatedly? Where lie the main sensitivities affecting robustness of the system?
What is the reason that there are cascades and feedback loops? More generally, what
can one say, if anything, about stability, oscillations, and other dynamical properties
of such complex systems? These questions, from a control-theoretic perspective, are
well-addressed in the literature, for example, top control journals such as Automatica
or IEEE Transactions on Automatic Control. Extensive literature review and analysis
will be performed. It should be mentioned that these questions are typically asked
by control engineers when designing machines such as cars, missiles, etc. These
performance metrics provide important labels/features to quantitatively characterise
the system. For example, robustness, the ability to maintain performance in the
face of perturbations and uncertainty should be universal from brain to engineering
systems.

P 5: Open source software development

In this work package, we plan to create and distribute easy-to-use software aimed
at a broad scientific audience. The algorithm we developed in P 2 and P 3 are
designed to deal with big data and based on distributed optimisation algorithm. The
distributed computation platform based on Apache Spark™ framework, within our
own Data Science Institute at Imperial College London, offers the possibility for
implementing these algorithms. We will code a set of Python scripts and algorithms
that can be used by non-mathematically trained neuroscientists to help them define
and solve their mathematical modelling problems based on measured functional

14.2 Future Direction II: Decision Making in Neuroscience 265

neuroimaging data. We will then develop an intuitive and easy-to-use graphical
user interface around these algorithms in order to automatically pre-process data,
identify optimal solutions and present the results to the end-user. To ensure efficient
code development, we will take advantage of some open source library such as the
Machine Learning library and the Convex Optimization library.

P 6: Link between subject measures and dynamical networks to preference

In this work package, we will investigate the underlying relationships between
different subject measures and different dynamical network patterns.

P 6.1 A natural choice of method for investigating underlying relationships be-
tween two sets of variables is canonical correlation analysis (CCA) [90], a procedure
that seeks maximal correlations between combinations of variables in both sets. At
the first stage of this project, we will use CCA to estimate pairs of canonical variates
along which sets of subject measures and patterns of brain connectivity co-vary in a
similar way across subjects.

P 6.2 In this work package, we want to model the performance metrics in P 4
using a machine learning approach. Three sets of features will be constructed. We
will use subject measures as the first set of features, i.e., demographics (age, sex,
income, education level, drug use, etc.), psychometrics (IQ, language performance,
etc.) and other behavioural measures such as ‘rule-breaking behaviour’. Then
we will use the eye movement measures as the second set of features, i.e., blink
frequency, blink duration, fixation frequency, fixation duration, pupil diameter, and
horizontal vergence. Finally, we will perform a time-frequency analysis to the single-
channel EEG we collected in P 1.2 using complex Morlet wavelets to extract features
that capture the mixture of frequencies and their interrelations at different points in
time as features. These EEG related features constitute to be the third set. To achieve
a good prediction performance, we will employ Deep Learning [19].

References

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Number 55. Courier Corporation.

[2] Abur, A. and Exposito, A. G. (2004). Power system state estimation: theory and
implementation. CRC Press.

[3] Akaike, H. (1974). A new look at the statistical model identification. Automatic
Cimperialthesis.bibontrol, IEEE Transactions on, 19(6):716–723.

[4] Alon, U. (2007a). An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC.

[5] Alon, U. (2007b). An introduction to systems biology: design principles of biological
circuits, volume 10. CRC press.

[6] Amelunxen, D., Lotz, M., McCoy, M. B., and Tropp, J. A. (2014). Living on the
edge: Phase transitions in convex programs with random data. Information and
Inference, page iau005.

[7] Arkin, A., Ross, J., and McAdams, H. H. (1998). Stochastic kinetic analysis of
developmental pathway bifurcation in phage λ-infected escherichia coli cells.
Genetics, 149(4):1633–1648.

[8] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
mathematical society, pages 337–404.

[9] Babacan, S., Molina, R., and Katsaggelos, A. (2010). Bayesian compressive
sensing using laplace priors. Image Processing, IEEE Transactions on, 19(1):53–63.

[10] Babacan, S. D. (2009). Bayesian techniques for image recovery. PhD thesis, North-
western University.

[11] Bach, F. R. and Jordan, M. I. (2004). Learning graphical models for stationary
time series. Signal Processing, IEEE Transactions on, 52(8):2189–2199.

[12] Bai, E. (1998). An optimal two-stage identification algorithm for hammerstein–
wiener nonlinear systems. Automatica, 34(3):333–338.

[13] Baillie, R. T. and Chung, S.-K. (2002). Modeling and forecasting from trend-
stationary long memory models with applications to climatology. International
Journal of Forecasting, 18(2):215–226.

268 References

[14] Balleine, B. W. (2005). Neural bases of food-seeking: affect, arousal and reward
in corticostriatolimbic circuits. Physiology & behavior, 86(5):717–730.

[15] Barahona, M. and Poon, C. (1996). Detection of nonlinear dynamics in short,
noisy time series. Nature, 381(6579):215–217.

[16] Barber, D. and Cemgil, A. (2010). Graphical models for time-series. Signal
Processing Magazine, IEEE, 27(6):18–28.

[17] Barlett, P. L. and Downs, T. (1992). Using random weights to train multilayer
networks of hard-limiting units. IEEE Transactions on Neural Networks, 3(2):202–
210.

[18] Baxter, M. and King, R. G. (1999). Measuring business cycles: approximate band-
pass filters for economic time series. Review of economics and statistics, 81(4):575–
593.

[19] Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends in
Machine Learning, 2(1):1–127.

[20] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A
review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(8):1798–1828.

[21] Billings, S. A. (2013). Nonlinear system identification: NARMAX methods in the
time, frequency, and spatio-temporal domains. John Wiley & Sons.

[22] Bishop, C. (2006). Pattern Recognition and Machine Learning, volume 4. Springer
New York.

[23] Bloomfield, P. (1992). Trends in global temperature. Climatic change, 21(1):1–16.

[24] Bloomfield, P. and Nychka, D. (1992). Climate spectra and detecting climate
change. Climatic Change, 21(3):275–287.

[25] Box, G. E., Jenkins, G. M., and Reinsel, G. C. (2011). Time series analysis: forecast-
ing and control, volume 734. John Wiley & Sons.

[26] Boyd, S., El Ghaoul, L., Feron, E., and Balakrishnan, V. (1987). Linear matrix
inequalities in system and control theory, volume 15. Society for Industrial Mathe-
matics.

[27] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of mul-
tipliers. Foundations and Trends in Machine Learning, 3(1):1–122.

[28] Boyd, S. and Vandenberghe, L. (2004). Convex optimisation. Cambridge univer-
sity press.

[29] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algo-
rithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208.

References 269

[30] Candès, E., Romberg, J., and Tao, T. (2006). Stable signal recovery from in-
complete and inaccurate measurements. Communications on pure and applied
mathematics, 59(8):1207–1223.

[31] Candès, E. and Tao, T. (2005). Decoding by linear programming. Information
Theory, IEEE Transactions on, 51(12):4203–4215.

[32] Candès, E., Wakin, M., and Boyd, S. (2008). Enhancing sparsity by reweighted
ℓ1 minimisation. Journal of Fourier Analysis and Applications, 14(5):877–905.

[33] Cardinal, R. N., Parkinson, J. A., Hall, J., and Everitt, B. J. (2002). Emotion
and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex.
Neuroscience & Biobehavioral Reviews, 26(3):321–352.

[34] Cerone, V., Piga, D., and Regruto, D. (2011). Enforcing stability constraints in
set-membership identification of linear dynamic systems. Automatica, 47(11):2488–
2494.

[35] Chen, T., Andersen, M., Ljung, L., Chiuso, A., and Pillonetto, G. (2014). Sys-
tem identification via sparse multiple kernel-based regularization using sequen-
tial convex optimization techniques. Automatic Control, IEEE Transactions on,
59(11):2933–2945.

[36] Chen, T., Ohlsson, H., and Ljung, L. (2012). On the estimation of transfer func-
tions, regularizations and gaussian processes—revisited. Automatica, 48(8):1525–
1535.

[37] Christiano, L. J. and Fitzgerald, T. J. (2003). The band pass filter*. international
economic review, 44(2):435–465.

[38] Cochrane, J. H. (2009). Asset Pricing. Princeton university press.

[39] Courbariaux, M., Bengio, Y., and David, J.-P. (2014). Training deep neural
networks with low precision multiplications. arXiv preprint arXiv:1412.7024.

[40] Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in
Neural Information Processing Systems, pages 3123–3131.

[41] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
Binarized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830.

[42] Craigmile, P. F., Guttorp, P., and Percival, D. B. (2004). Trend assessment in a
long memory dependence model using the discrete wavelet transform. Environ-
metrics, 15(4):313–335.

[43] Cui, Y., Surpur, C., Ahmad, S., and Hawkins, J. (2016). A comparative study of
htm and other neural network models for online sequence learning with streaming
data. In Proceedings of the International Joint Conference on Neural Networks.

270 References

[44] Dai, W. and Milenkovic, O. (2009). Subspace pursuit for compressive sensing
signal reconstruction. Information Theory, IEEE Transactions on, 55(5):2230–2249.

[45] Dale, A. M. and Sereno, M. I. (1993). Improved localizadon of cortical activity
by combining eeg and meg with mri cortical surface reconstruction: a linear
approach. Journal of cognitive neuroscience, 5(2):162–176.

[46] Darmois, G. (1935). Sur les lois de probabilitéa estimation exhaustive. CR Acad.
Sci. Paris, 260(1265):85.

[47] David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M., and Friston,
K. J. (2006). Dynamic causal modeling of evoked responses in eeg and meg.
NeuroImage, 30(4):1255–1272.

[48] De Brabanter, K., De Brabanter, J., De Moor, B., and Gijbels, I. (2013). Derivative
estimation with local polynomial fitting. The Journal of Machine Learning Research,
14(1):281–301.

[49] Ding, S. X. (2008). Model-based fault diagnosis techniques: design schemes, algorithms,
and tools. Springer.

[50] Donoho, D. (2006). Compressed sensing. Information Theory, IEEE Transactions
on, 52(4):1289–1306.

[51] Donoho, D. and Elad, M. (2003). Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202.

[52] Donoho, D. and Huo, X. (2001). Uncertainty principles and ideal atomic decom-
position. IEEE Transactions on Information Theory, 47(7):2845–2862.

[Donoho and Stodden] Donoho, D. and Stodden, V. Breakdown point of model
selection when the number of variables exceeds the number of observations.
Neural Networks, 2006. IJCNN’06. International Joint Conference on, pages 1916–1921.

[54] Donoho, D. L., Stodden, V. C., and Tsaig, Y. (2007). About SparseLab. Online
accessible: http://sparselab.stanford.edu.

[55] Elowitz, M. and Leibler, S. (2000). A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403(6767):335–8.

[56] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates
of the variance of united kingdom inflation. Econometrica: Journal of the Econometric
Society, pages 987–1007.

[57] Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., An-
dreopoulos, A., Berg, D. J., McKinstry, J. L., Melano, T., Barch, D. R., et al. (2016).
Convolutional networks for fast, energy-efficient neuromorphic computing. Pro-
ceedings of the National Academy of Sciences, page 201604850.

[58] Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization networks and
support vector machines. Advances in computational mathematics, 13(1):1–50.

References 271

[59] Ferry, M., Razinkov, I., and Hasty, J. (2011). Microfluidics for synthetic biology:
from design to execution. Methods in enzymology, 497:295.

[60] Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., and
Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal
choice. Nature neuroscience, 13(5):538–539.

[61] Figueiredo, M. A. and Bioucas-Dias, J. M. (2010). Restoration of poissonian im-
ages using alternating direction optimization. Image Processing, IEEE Transactions
on, 19(12):3133–3145.

[62] Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441.

[63] Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto,
N., Henson, R., Flandin, G., and Mattout, J. (2008). Multiple sparse priors for the
m/eeg inverse problem. NeuroImage, 39(3):1104–1120.

[64] Frydman, C., Camerer, C., Bossaerts, P., and Rangel, A. (2011). Maoa-l carriers
are better at making optimal financial decisions under risk. Proceedings of the Royal
Society of London B: Biological Sciences, 278(1714):2053–2059.

[65] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 580–587.

[66] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. In International Conference on Artificial Intelligence and Statistics, pages
315–323.

[67] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y.
(2013). Maxout networks. arXiv preprint arXiv:1302.4389.

[68] Granger, C. W. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica: Journal of the Econometric Society, pages
424–438.

[69] Grant, M., Boyd, S., and Ye, Y. (2008). CVX: MATLAB software for disciplined
convex programming. Online accessiable: http://cvxr.com.

[70] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

[71] Greenland, S. and Longnecker, M. P. (1992). Methods for trend estimation from
summarized dose-response data, with applications to meta-analysis. American
journal of epidemiology, 135(11):1301–1309.

[72] Haber, R. and Unbehauen, H. (1990). Structure identification of nonlinear
dynamic systems: survey on input/output approaches. Automatica, 26(4):651–677.

[73] Hamilton, J. D. (1994). Time Series Analysis, volume 2. Princeton University
Press.

272 References

[74] Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
International Conference on Learning Representations (ICLR).

[75] Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both weights and con-
nections for efficient neural network. In Advances in Neural Information Processing
Systems (NIPS), pages 1135–1143.

[76] Hansen, L. P. (1982). Large sample properties of generalized method of mo-
ments estimators. Econometrica: Journal of the Econometric Society, pages 1029–1054.

[77] Hansen, L. P. and Singleton, K. J. (1982). Generalized instrumental variables
estimation of nonlinear rational expectations models. Econometrica: Journal of the
Econometric Society, pages 1269–1286.

[78] Hassibi, B. and Stork, D. G. (1993). Second order derivatives for network pruning:
Optimal brain surgeon. Morgan Kaufmann.

[79] Hastie, T. and Tibshirani, R. (2009). The Elements of Statistical Learning, volume 2.
Springer.

[80] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

[81] Hegland, M. (2007). Approximate maximum a posteriori with gaussian process
priors. Constructive Approximation, 26(2):205–224.

[82] Heinrich, G., Ludwig, M., Qian, J., Kubala, B., and Marquardt, F. (2011). Collec-
tive dynamics in optomechanical arrays. Physical review letters, 107(4):043603.

[83] Henson, R. N., Wakeman, D. G., Litvak, V., and Friston, K. J. (2011). A paramet-
ric empirical bayesian framework for the eeg/meg inverse problem: generative
models for multi-subject and multi-modal integration. Frontiers in human neuro-
science, 5.

[84] Hines, P., Balasubramaniam, K., and Sanchez, E. C. (2009). Cascading failures
in power grids. Potentials, IEEE, 28(5):24–30.

[85] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507.

[86] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

[87] Hodrick, R. J. and Prescott, E. C. (1997). Postwar us business cycles: an empirical
investigation. Journal of Money, credit, and Banking, pages 1–16.

[88] Holland, P. C. and Gallagher, M. (2004). Amygdala–frontal interactions and
reward expectancy. Current opinion in neurobiology, 14(2):148–155.

References 273

[89] Horn, R. and Johnson, C. (1990). Matrix analysis. Cambridge university press.

[90] Hotelling, H. (1936). Relations between two sets of variates. Biometrika, pages
321–377.

[91] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
Quantized neural networks: Training neural networks with low precision weights
and activations. arXiv preprint arXiv:1609.07061.

[92] Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American
Statistician, 58(1):30–37.

[93] Ingolia, N. T. and Weissman, J. S. (2008). Systems biology: reverse engineering
the cell. Nature, 454(7208):1059–1062.

[94] Itti, L. and Koch, C. (2001). Computational modelling of visual attention. Nature
reviews neuroscience, 2(3):194–203.

[95] Ji, S., Xue, Y., and Carin, L. (2008). Bayesian compressive sensing. Signal
Processing, IEEE Transactions on, 56(6):2346–2356.

[96] Jin, J., Pan, W., Pham, D. L., Yuan, Y., Tomlin, C. J., Webb, A., and Goncalves,
J. (2016). On identification of dynamical structure functions: A sparse bayesian
learning approach. arXiv preprint arXiv:1605.09543.

[97] Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233.

[98] Kaltenbach, H.-M., Dimopoulos, S., and Stelling, J. (2009). Systems analysis of
cellular networks under uncertainty. FEBS letters, 583(24):3923–3930.

[99] karl j friston, lee m harrison, w. d. p. (2003). Dynamic causal modelling.
19(4):1273–1302.

[100] Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C.-C., and Friston, K. J. (2009).
Dynamic causal modeling for eeg and meg. Human brain mapping, 30(6):1866–1876.

[101] Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009). ℓ1 trend filtering. Siam
Review, 51(2):339–360.

[102] Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2015). Com-
pression of deep convolutional neural networks for fast and low power mobile
applications. arXiv preprint arXiv:1511.06530.

[103] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

[104] Kollar, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. The MIT Press.

[105] Koopman, B. O. (1936). On distributions admitting a sufficient statistic. Trans-
actions of the American Mathematical society, 39(3):399–409.

274 References

[106] Krajbich, I., Armel, C., and Rangel, A. (2010). Visual fixations and the compu-
tation and comparison of value in simple choice. Nature neuroscience, 13(10):1292–
1298.

[107] Krajbich, I. and Rangel, A. (2011). Multialternative drift-diffusion model
predicts the relationship between visual fixations and choice in value-based
decisions. Proceedings of the National Academy of Sciences, 108(33):13852–13857.

[108] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105.

[109] Kundur, P., Balu, N. J., and Lauby, M. G. (1994). Power system stability and
control, volume 4. McGraw-hill New York.

[110] Larsen, T. and O’Doherty, J. P. (2014). Uncovering the spatio-temporal dynam-
ics of value-based decision-making in the human brain: a combined fmri–eeg
study. Philosophical Transactions of the Royal Society of London B: Biological Sciences,
369(1655):20130473.

[111] LeCun, Y., Denker, J. S., Solla, S. A., Howard, R. E., and Jackel, L. D. (1989).
Optimal brain damage. In NIPs, volume 89.

[112] Leontaritis, I. and Billings, S. (1985). Input-output parametric models for
non-linear systems part i: deterministic non-linear systems. International journal of
control, 41(2):303–328.

[113] Leser, C. (1961). A simple method of trend construction. Journal of the Royal
Statistical Society. Series B (Methodological), pages 91–107.

[114] Levitt, S. D. (2004). Understanding why crime fell in the 1990s: Four factors
that explain the decline and six that do not. Journal of Economic perspectives, pages
163–190.

[115] Link, W. A. and Sauer, J. R. (1994). Estimating equations estimates of trends.
Bird Populations, 2:23–32.

[116] Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for
large scale optimization. Mathematical programming, 45(1):503–528.

[117] Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall.

[118] Ljung, L., Hjalmarsson, H., and Ohlsson, H. (2011). Four encounters with
system identification. European Journal of Control, 17(5):449.

[119] Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in MAT-
LAB. In Computer Aided Control Systems Design, 2004 IEEE International Symposium
on, pages 284–289. IEEE.

[120] Lucas, R. E. (1980). Two illustrations of the quantity theory of money. The
American Economic Review, pages 1005–1014.

References 275

[121] Lygeros, J., Johansson, K. H., Simic, S. N., Zhang, J., and Sastry, S. S. (2003).
Dynamical properties of hybrid automata. Automatic Control, IEEE Transactions on,
48(1):2–17.

[122] Mankiw, N. (2014). Principles of macroeconomics. Cengage Learning.

[123] Materassi, D. and Salapaka, M. V. (2012). On the problem of reconstructing an
unknown topology via locality properties of the wiener filter. Automatic Control,
IEEE Transactions on, 57(7):1765–1777.

[124] Menolascina, F., Fiore, G., Orabona, E., De Stefano, L., Ferry, M., Hasty, J.,
di Bernardo, M., and di Bernardo, D. (2014). In-vivo real-time control of protein
expression from endogenous and synthetic gene networks. PLoS Comput Biol,
10(5):e1003625.

[125] Mohajerin Esfahani, P., Vrakopoulou, M., Andersson, G., and Lygeros, J. (2012).
A tractable nonlinear fault detection and isolation technique with application to
the cyber-physical security of power systems. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, pages 3433–3438.

[126] Mosheiov, G. and Raveh, A. (1997). On trend estimation of time-series: a
simple linear programming approach. Journal of the operational research society,
48(1):90–96.

[127] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

[128] Narendra, K. and Parthasarathy, K. (1990). Identification and control of dy-
namical systems using neural networks. Neural Networks, IEEE Transactions on,
1(1):4–27.

[129] Needell, D. and Vershynin, R. (2009). Uniform uncertainty principle and
signal recovery via regularized orthogonal matching pursuit. Foundations of
computational mathematics, 9(3):317–334.

[130] Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete
basis set: A strategy employed by v1? Vision research, 37(23):3311–3325.

[131] Osborn, D. R. (1995). Moving average detrending and the analysis of business
cycles†. Oxford Bulletin of Economics and Statistics, 57(4):547–558.

[132] Ozay, N., Sznaier, M., Lagoa, C. M., and Camps, O. I. (2012). A sparsification
approach to set membership identification of switched affine systems. Automatic
Control, IEEE Transactions on, 57(3):634–648.

[133] Padoa-Schioppa, C. and Assad, J. A. (2006). Neurons in the orbitofrontal cortex
encode economic value. Nature, 441(7090):223–226.

[134] Palmer, J., Wipf, D., Kreutz-Delgado, K., and Rao, B. (2005). Variational EM
algorithms for non-Gaussian latent variable models. Advances in neural information
processing systems, 18:1059.

276 References

[135] Pan, W. (2015). Sparse Inference of Nonlinear Dynamical Systems from Time Series
Data. PhD thesis, Imperial College London.

[136] Pan, W., Sootla, A., and Stan, G.-B. (2014a). Distributed Reconstruction of Non-
linear Networks: An ADMM Approach. The International Federation of Automatic
Control Cape Town, South Africa. arXiv:1403.7429.

[137] Pan, W., Yuan, Y., Dai, W., Ellis, T., Gonçalves, J., Barahona, M., and Stan,
G.-B. (2015 (in preparation)). Learning the Nonlinear Structure of Large-Scale
Dynamical Systems from Noisy Observations. Physical Review Letters.

[138] Pan, W., Yuan, Y., Gonçalves, J., and Stan, G.-B. (2012). Reconstruction of
Arbitrary Biochemical Reaction Networks : A Compressive Sensing Approach. In
IEEE 51st Annual Conference on Decision and Control (CDC). IEEE. arXiv:1205.1720.

[139] Pan, W., Yuan, Y., Gonçalves, J., and Stan, G.-B. (2016). A sparse bayesian
approach to the identification of nonlinear state-space systems. IEEE Transactions
on Automatic Control, 61(1):182–187.

[140] Pan, W., Yuan, Y., Ljung, L., Gonçalves, J., and Stan, G.-B. (2015 (submitted)).
Nonlinear Biochemical Reaction Networks Identification From Heterogeneous
Datasetss. In IEEE 54st Annual Conference on Decision and Control (CDC). IEEE.

[141] Pan, W., Yuan, Y., Sandberg, H., Gonçalves, J., and Stan, G.-B. (2013). Real-time
Fault diagnosis for large-scale nonlinear power networks. In IEEE 52nd Annual
Conference on Decision and Control (CDC), pages 2340–2345. IEEE.

[142] Pan, W., Yuan, Y., Sandberg, H., Gonçalves, J., and Stan, G.-B. (2015). Online
fault diagnosis for nonlinear power systems. Automatica, 55:27–36.

[143] Pan, W., Yuan, Y., Sootla, A., and Stan, G.-B. (2014b). Inference of Switched
Biochemical Reaction Networks Using Sparse Bayesian Learning. European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD), page 51.

[144] Paoletti, S., Juloski, A. L., Ferrari-Trecate, G., and Vidal, R. (2007). Identification
of hybrid systems a tutorial. European journal of control, 13(2):242–260.

[145] Papachristodoulou, A. and Recht, B. (2007). Determining interconnections in
chemical reaction networks. In American Control Conference, 2007. ACC’07, pages
4872–4877. IEEE.

[146] Pavella, M., Ernst, D., and Ruiz-Vega, D. (2000). Transient stability of power
systems: a unified approach to assessment and control. Springer.

[147] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

[148] Pelckmans, K., Suykens, J. A., Van Gestel, T., De Brabanter, J., Lukas, L.,
Hamers, B., De Moor, B., and Vandewalle, J. (2002). Ls-svmlab: a matlab/c
toolbox for least squares support vector machines. Tutorial. KULeuven-ESAT.
Leuven, Belgium.

http://www.ifac-papersonline.net/Detailed/66239.html
http://www.ifac-papersonline.net/Detailed/66239.html
http://arxiv.org/abs/1403.7429
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6426216
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6426216
http://arxiv.org/abs/1205.1720
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6760230
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6760230
https://phdsession-ecmlpkdd2014.greyc.fr/sites/phdsession-ecmlpkdd2014.greyc.fr/files/papers/Paper_20689.pdf
https://phdsession-ecmlpkdd2014.greyc.fr/sites/phdsession-ecmlpkdd2014.greyc.fr/files/papers/Paper_20689.pdf

References 277

[149] Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., and Frith, C. D. (2006).
Dopamine-dependent prediction errors underpin reward-seeking behaviour in
humans. Nature, 442(7106):1042–1045.

[150] Pillonetto, G., Chiuso, A., and De Nicolao, G. (2011). Prediction error identifica-
tion of linear systems: a nonparametric gaussian regression approach. Automatica,
47(2):291–305.

[151] Pillonetto, G. and De Nicolao, G. (2010). A new kernel-based approach for
linear system identification. Automatica, 46(1):81–93.

[152] Pillonetto, G. and De Nicolao, G. (2011). Kernel selection in linear system
identification part i: A gaussian process perspective. In Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages
4318–4325. IEEE.

[153] Pitman, E. J. G. (1936). Sufficient statistics and intrinsic accuracy. In Mathe-
matical Proceedings of the cambridge Philosophical society, volume 32, pages 567–579.
Cambridge Univ Press.

[154] Plassmann, H., O’Doherty, J., and Rangel, A. (2007). Orbitofrontal cortex
encodes willingness to pay in everyday economic transactions. The Journal of
neuroscience, 27(37):9984–9988.

[155] Platt, M. L. and Glimcher, P. W. (1999). Neural correlates of decision variables
in parietal cortex. Nature, 400(6741):233–238.

[156] Poggio, T. and Shelton, C. (2002). On the mathematical foundations of learning.
American Mathematical Society, 39(1):1–49.

[157] Pollock, D. (2000). Trend estimation and de-trending via rational square-wave
filters. Journal of Econometrics, 99(2):317–334.

[158] Rasmussen, C. E. (2006). Gaussian processes for machine learning.

[159] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net:
Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer.

[160] Reinsch, C. H. (1967). Smoothing by spline functions. Numerische mathematik,
10(3):177–183.

[161] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99.

[162] Rockafellar, R. (1996). Convex analysis, volume 28. Princeton university press.

[163] Ruess, J., Parise, F., Milias-Argeitis, A., Khammash, M., and Lygeros, J. (2015).
Iterative experiment design guides the characterization of a light-inducible gene
expression circuit. Proceedings of the National Academy of Sciences, 112(26):8148–
8153.

278 References

[164] Rutledge, R. B., Skandali, N., Dayan, P., and Dolan, R. J. (2015). Dopamin-
ergic modulation of decision making and subjective well-being. The Journal of
Neuroscience, 35(27):9811–9822.

[165] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer
theorem. In Computational learning theory, pages 416–426. Springer.

[166] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press.

[167] Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics,
6(2):461–464.

[168] Set, E., Saez, I., Zhu, L., Houser, D. E., Myung, N., Zhong, S., Ebstein, R. P.,
Chew, S. H., and Hsu, M. (2014). Dissociable contribution of prefrontal and striatal
dopaminergic genes to learning in economic games. Proceedings of the National
Academy of Sciences, 111(26):9615–9620.

[169] Setty, Y., Mayo, A., Surette, M., and Alon, U. (2003). Detailed map of a
cis-regulatory input function. Proceedings of the National Academy of Sciences,
100(13):7702.

[170] Shahidehpour, M., Tinney, F., and Fu, Y. (2005). Impact of security on power
systems operation. Proceedings of the IEEE, 93(11):2013–2025.

[171] Shames, I., Teixeira, A. M., Sandberg, H., and Johansson, K. H. (2011). Dis-
tributed fault detection for interconnected second-order systems. Automatica.

[172] Singleton, K. J. (1988). Econometric issues in the analysis of equilibrium
business cycle models. Journal of Monetary Economics, 21(2):361–386.

[173] Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.,
Hjalmarsson, H., and Juditsky, A. (1995). Nonlinear black-box modeling in system
identification: a unified overview. Automatica, 31(12):1691–1724.

[174] Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E.,
Glasser, M. F., Ugurbil, K., Barch, D. M., Van Essen, D. C., and Miller, K. L. (2015).
A positive-negative mode of population covariation links brain connectivity,
demographics and behavior. Nature neuroscience, 18(11):1565–1567.

[175] Söderström, T. and Stoica, P. (1988). System identification. Prentice-Hall, Inc.

[176] Soloveichik, D., Seelig, G., and Winfree, E. (2010). Dna as a universal substrate
for chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–
5398.

[177] Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, prediction, and
search, volume 81. The MIT Press.

[178] Srebro, N. and Shraibman, A. (2005). Rank, trace-norm and max-norm. In
Learning Theory, pages 545–560. Springer.

References 279

[179] Sriperumbudur, B. K. and Lanckriet, G. R. (2009). On the convergence of the
concave-convex procedure. In NIPS, volume 9, pages 1759–1767.

[180] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958.

[181] Strelkowa, N. and Barahona, M. (2010). Switchable genetic oscillator operating
in quasi-stable mode. Journal of The Royal Society Interface, page rsif20090487.

[182] Strogatz, S. (2000). From kuramoto to crawford: exploring the onset of syn-
chronisation in populations of coupled oscillators. Physica D: Nonlinear Phenomena,
143(1):1–20.

[183] Sturm, J. F. (1999). Using sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization methods and software, 11(1-4):625–653.

[184] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9.

[185] Taflove, A. and Hagness, S. C. (2005). Computational electrodynamics. Artech
house.

[186] Talluri, K. T. and Van Ryzin, G. J. (2006). The theory and practice of revenue
management, volume 68. Springer Science & Business Media.

[187] Tate, J. E. and Overbye, T. J. (2008). Line outage detection using phasor angle
measurements. Power Systems, IEEE Transactions on, 23(4):1644–1652.

[188] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288.

[189] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108.

[190] Tibshirani, R. J., Taylor, J. E., Candes, E. J., and Hastie, T. (2011). The solution
path of the generalized lasso. Stanford University.

[191] Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine.
The Journal of Machine Learning Research, 1:211–244.

[192] Tipping, M. and Faul, A. (2003). Fast marginal likelihood maximisation for
sparse bayesian models. In Proceedings of the ninth international workshop on artificial
intelligence and statistics, volume 1.

[193] Toh, K.-C., Todd, M. J., and Tütüncü, R. H. (1999). Sdpt3–a MATLAB software
package for semidefinite programming, version 1.3. Optimization Methods and
Software, 11(1-4):545–581.

280 References

[194] Toms, D. (1990). Training binary node feedforward neural networks by back
propagation of error. Electronics letters, 26(21):1745–1746.

[195] Tropp, J. et al. (2004). Greed is good: Algorithmic results for sparse approxi-
mation. Information Theory, IEEE Transactions on, 50(10):2231–2242.

[196] Tropp, J. et al. (2006). Just relax: Convex programming methods for identifying
sparse signals in noise. Information Theory, IEEE Transactions on, 52(3):1030–1051.

[197] Tropp, J. and Gilbert, A. (2007). Signal recovery from random measure-
ments via orthogonal matching pursuit. Information Theory, IEEE Transactions
on, 53(12):4655–4666.

[198] Tsay, R. S. (2005). Analysis of financial time series, volume 543. John Wiley &
Sons.

[199] Tseng, P.-H., Cameron, I. G., Pari, G., Reynolds, J. N., Munoz, D. P., and Itti,
L. (2013). High-throughput classification of clinical populations from natural
viewing eye movements. Journal of neurology, 260(1):275–284.

[200] Van Der Merwe, R. and Wan, E. A. (2001). The square-root unscented kalman
filter for state and parameter-estimation. In Acoustics, Speech, and Signal Processing,
2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, volume 6,
pages 3461–3464. IEEE.

[201] Vanlier, J., Tiemann, C., Hilbers, P., and van Riel, N. (2013). Parameter un-
certainty in biochemical models described by ordinary differential equations.
Mathematical biosciences, 246(2):305–314.

[202] Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, volume 1. Wiley
New York.

[203] Varian, H. R. and Repcheck, J. (2010). Intermediate microeconomics: a modern
approach, volume 7. WW Norton New York.

[204] Venkatesh, G., Nurvitadhi, E., and Marr, D. (2016). Accelerating deep convolu-
tional networks using low-precision and sparsity. arXiv preprint arXiv:1610.00324.

[205] Von Neumann, J. and Morgenstern, O. (1947). Theory of games and economic
behavior. Princeton university press.

[206] Wahba, G. (1990). Spline models for observational data, volume 59. Siam.

[207] Wahlberg, B., Boyd, S., Annergren, M., and Wang, Y. (2012). An ADMM
algorithm for a class of total variation regularized estimation problems. 16th IFAC
Symposium on System Identification.

[208] Wainwright, M. and Jordan, M. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.

[209] Walter, E., Pronzato, L., and Norton, J. (1997). Identification of parametric models
from experimental data, volume 1. Springer Berlin.

References 281

[210] Wiener, N. (1966). Nonlinear problems in random theory. Nonlinear Problems
in Random Theory, by Norbert Wiener, pp. 142. ISBN 0-262-73012-X. Cambridge,
Massachusetts, USA: The MIT Press, August 1966.(Paper), 1.

[211] Winful, H. G. and Rahman, L. (1990). Synchronized chaos and spatiotemporal
chaos in arrays of coupled lasers. Physical Review Letters, 65(13):1575.

[212] Wipf, D. and Nagarajan, S. (2010). Iterative reweighted ℓ1 and ℓ2 methods
for finding sparse solutions. IEEE Journal of Selected Topics in Signal Processing,
4(2):317–329.

[213] Wipf, D. and Rao, B. (2004). Sparse Bayesian learning for basis selection. Signal
Processing, IEEE Transactions on, 52(8):2153–2164.

[214] Wipf, D., Rao, B., and Nagarajan, S. (2011). Latent variable bayesian models
for promoting sparsity. Information Theory, IEEE Transactions on, 57(9):6236–6255.

[215] Wipf, D. P. (2006). Bayesian methods for finding sparse representations. PhD thesis,
University of California, San Diego.

[216] Wipf, D. P. (2011). Sparse estimation with structured dictionaries. In Advances
in Neural Information Processing Systems, pages 2016–2024.

[217] Wipf, D. P., Owen, J. P., Attias, H. T., Sekihara, K., and Nagarajan, S. S. (2010).
Robust bayesian estimation of the location, orientation, and time course of multi-
ple correlated neural sources using meg. NeuroImage, 49(1):641–655.

[218] Wipf, D. P. and Rao, B. D. (2007). An empirical bayesian strategy for solving the
simultaneous sparse approximation problem. Signal Processing, IEEE Transactions
on, 55(7):3704–3716.

[219] Wright, S. and Nocedal, J. (1999). Numerical optimization. Springer Science,
35:67–68.

[220] Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. (2016). Quantized convolu-
tional neural networks for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4820–4828.

[221] Yin, H. H. and Knowlton, B. J. (2006). The role of the basal ganglia in habit
formation. Nature Reviews Neuroscience, 7(6):464–476.

[222] Yin, S. and Kaynak, O. (2015). Big data for modern industry: challenges and
trend. Proceedings of the IEEE.

[223] Yuan, Y. (2012). Decentralised network prediction and reconstruction algorithms.
PhD thesis, University of Cambridge.

[224] Yuan, Y., Stan, G., Warnick, S., and Goncalves, J. (2011). Robust dynamical
network structure reconstruction. Special Issue on System Biology, Automatica,
47:1230–1235.

282 References

[225] Yue, Z., Thunberg, J., Pan, W., Ljung, L., and Goncalves, J. (2016). Linear
dynamic network reconstruction from heterogeneous datasets. arXiv preprint
arXiv:1612.01963.

[226] Yuille, A. L. and Rangarajan, A. (2003). The concave-convex procedure. Neural
computation, 15(4):915–936.

[227] Zadeh, L. et al. (1956). On the identification problem. Circuit Theory, IRE
Transactions on, 3(4):277–281.

[228] Zangwill, W. I. (1969). Nonlinear programming: a unified approach. Prentice-Hall
Englewood Cliffs, NJ.

[229] Zavlanos, M., Julius, A., Boyd, S., and Pappas, G. (2011). Inferring stable
genetic networks from steady-state data. Automatica, 47(6):1113–1122.

[230] Zhang, Q., Zhang, X., Polycarpou, M. M., and Parisini, T. (2014). Distributed
sensor fault detection and isolation for multimachine power systems. International
Journal of Robust and Nonlinear Control, 24(8-9):1403–1430.

[231] Zhang, Z. (2012). Sparse signal recovery exploiting spatiotemporal correlation. PhD
thesis.

[232] Zhang, Z., Jung, T.-P., Makeig, S., and Rao, B. (2013a). Compressed sensing for
energy-efficient wireless telemonitoring of noninvasive fetal ecg via block sparse
bayesian learning. Biomedical Engineering, IEEE Transactions on, 60(2):300–309.

[233] Zhang, Z., Jung, T.-P., Makeig, S., and Rao, B. (2013b). Compressed sensing of
eeg for wireless telemonitoring with low energy consumption and inexpensive
hardware. Biomedical Engineering, IEEE Transactions on, 60(1):221–224.

[234] Zhang, Z. and Rao, B. D. (2011). Sparse signal recovery with temporally
correlated source vectors using sparse bayesian learning. Selected Topics in Signal
Processing, IEEE Journal of, 5(5):912–926.

[235] Zhang, Z. and Rao, B. D. (2012). Extension of sbl algorithms for the recovery
of block sparse signals with intra-block correlation. arXiv preprint arXiv:1201.0862.

[236] Zhao, S. and Wei, G.-W. (2003). Jump process for the trend estimation of time
series. Computational Statistics & Data Analysis, 42(1):219–241.

[237] Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. (2017). Incremental network
quantization: Towards lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044.

[238] Zhou, K., Doyle, J. C., Glover, K., et al. (1996). Robust and optimal control,
volume 40. Prentice hall New Jersey.

[239] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 System Identification
	1.1.1 The Omni-present Model
	1.1.2 System Identification: Data Driven Modelling
	1.1.3 The State-of-the-Art Identification Setup

	1.2 Convex Optimisation
	1.2.1 Convex Relaxation
	1.2.2 Convex Concave Procedure

	1.3 Sparse Signal Recovery
	1.4 Machine Learning
	1.4.1 Why Choose Marginal Likelihood
	1.4.2 Why Choose Sparse Bayesian Learning

	1.5 The Big Picture and Contributions
	1.5.1 A Story on Healthcare
	1.5.2 Strategy
	1.5.3 Contributions and Outlines

	I Dynamical Systems
	2 Nonlinear Dynamical Systems
	2.1 Introduction
	2.2 Linear Time-Invariant Systems
	2.2.1 Impulse Response and Transfer Function
	2.2.2 Linear Models and Sets of Linear Models
	2.2.3 ARX Model Structure
	2.2.4 ARMAX Model Structure
	2.2.5 Linear Regression Model

	2.3 Nonlinear Time-Invariant Systems
	2.3.1 Nonlinear Time-Invariant Systems
	2.3.2 Some Key Assumptions
	2.3.3 Linear Regression Model
	2.3.4 Additional Experiment Designs

	2.4 Linear Regression Problem
	2.4.1 Regression Problem Statement
	2.4.2 Nonconvex Optimisation Problem
	2.4.3 Convex Relaxation

	3 Nonlinear Dynamical System with Heterogeneous Datasets
	3.1 Introduction
	3.2 Linear Regression Model
	3.3 Linear Regression Problem
	3.3.1 Regression Problem Statement
	3.3.2 Nonconvex Optimisation Problem
	3.3.3 Convex Relaxation

	4 Time-Varying Dynamical System
	4.1 Introduction
	4.2 Regime-Switch Dynamical System
	4.2.1 Scalar Linear Regime-Switch Systems
	4.2.2 Multivariate Regime-Switch Nonlinear Systems

	4.3 Linear Regression Model
	4.4 Linear Regression Problem
	4.4.1 Regression Problem Statement
	4.4.2 Nonconvex Optimisation Problem
	4.4.3 Convex Relaxation

	4.5 Models with Abrupt Change
	4.5.1 Trend Filtering
	4.5.2 Fault Diagnosis Problem

	5 Technical Issues Related to Dynamical System Identification
	5.1 Uniquesness of Solutions in Chapter 2
	5.2 Selection of Candidate Basis Functions
	5.3 Dealing with Basis Function Nonlinearity
	5.4 Gaussian Assumption
	5.5 Dealing with Measurement Noise
	5.6 Estimation of the Derivative

	II Algorithms
	6 Algorithms for Likelihood in Gaussian
	6.1 Gaussian Likelihood
	6.2 Sparse Prior
	6.3 Optimisation Problem Definition
	6.4 Optimisation Principle
	6.5 Optimisation Algorithm
	6.5.1 Iterative Reweighted 1 Algorithm
	6.5.2 Iterative Reweighted 2 Algorithm
	6.5.3 Inverse Covariance Matrix Estimation
	6.5.4 Volatility Estimation

	6.6 Algorithms for Chapter 2
	6.6.1 Sparse Prior for Chapter 2
	6.6.2 Optimisation Problem Derivation
	6.6.3 Centralised Optimisation Algorithm
	6.6.4 Distributed Optimisation Algorithm

	6.7 Algorithms for Chapter 3
	6.7.1 Sparse Prior for Chapter 3
	6.7.2 Optimisation Algorithm

	6.8 Algorithms for Chapter 4
	6.8.1 Sparse Prior for Chapter 4
	6.8.2 Optimisation Algorithm

	7 Algorithms for Likelihood in Exponential Family
	7.1 Likelihood in Exponential Family
	7.2 Sparse Prior
	7.2.1 Generalised Sparse Prior
	7.2.2 Group Sparse Prior
	7.2.3 Fused Sparse Prior

	7.3 Optimisation Problem Definition
	7.4 Optimisation Algorithm
	7.4.1 Optimisation for unknown parameter and hyperparameter
	7.4.2 Optimisation for the parameter of the exponential family
	7.4.3 Implementations

	7.5 Optimisation Algorithm with Structural Sparsity
	7.5.1 Algorithm for Group Spare Prior in Section 7.2.2
	7.5.2 Algorithm for Fused Sparse Prior in Section 7.2.3

	8 Algorithms for Online Model Selection
	8.1 Extended Kalman Filter
	8.2 Algorithm combining model structure identification and model refinement

	9 Algorithms for Fault Diagnosis
	9.1 Fault Diagnosis Problem Formulation
	9.2 Fault Detection and Isolation Algorithm
	9.3 Fault Identification Algorithm

	III Applications
	10 Biochemical Reaction Network Identification
	10.1 Identification from Single Time Series Data
	10.2 Identificaton from Multiple Heterogeneous Time Series Datasets
	10.3 Online Model Selection
	10.3.1 Background
	10.3.2 Questions of interest
	10.3.3 Simulations

	10.4 Identificaton Switched Biochemical Reation Networks

	11 Complex Network Reconstruction
	11.1 Centralised Identification
	11.2 Distributed Identification

	12 Fault Diagnosis of Power System
	12.1 Introduction
	12.2 Power System Model
	12.3 Fault Diagnosis Problem of Nonlinear Power Systems
	12.3.1 Model Transformation
	12.3.2 Fault Diagnosis Algorithm

	12.4 Numerical Study
	12.5 Conclusion and Discussion

	IV Conclusion and Future Direction
	13 Conclusion
	14 Future Direction
	14.1 Future Direction I: Bayesian Deep Learning
	14.1.1 Background on Deep Learning and Deep Neural Networks
	14.1.2 Structural Sparsity in Deep Neural Network
	14.1.3 Identifiability of Deep Neural Networks
	14.1.4 Training Bayesian Deep Neural Network with Structural Sparsity
	14.1.5 Implementation on Mobile Device Chips

	14.2 Future Direction II: Decision Making in Neuroscience
	14.2.1 Cognitive Design Principles for Real-Time Decision Making using Neural Big Data
	14.2.2 Background
	14.2.3 Hypothesis and Objectives
	14.2.4 Problems and Plan

	References

